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Problem Set 3.1, page 160

1 (a) Why do two isoclineg (¢, y) = s; and f (¢, y) = s2 never meet ?
(b) Along the isoclinef (¢, y) = s, what is the slope of all the arrows ?
(c) Then all solution curves go only one way across an .
Solution (a) Isoclines can’t meet becaugg, y) has one fixed value along an isocline.
(b) The slope of the arrows is fixed &along the isocling' (¢, y) = s.
(c) All solution curves go one way (with slopg across the isocling(t, y) = s.
2 (a) Areisoclinesf(t,y) = s; andf(t,y) = so always parallel ? Always straight ?
(b) Anisoclinef(t,y) = s is a solution curve when its slope equals .
(c) The zeroclingf (¢, y) = 0 is a solution curve only whepis _ : slope0.

Solution (a) In casef(t,y) does not depend an(autonomous equation) the isoclines
are horizontal lines. In general isoclines need to be pdrmaillstraight.

(b) If the slope of the isoclinef(t, y) = s happens to be (slope of arrows equals slope
of curve, so the arrows go along the isocline) then the isedk actually a solution
curve. Example: A steady state wheféy) = 0 has arrows of slope zero. That
horizontal isocline is also the graph of the constant sofujit) = Y.

(c) The zerocline is a solution curve when the slope is zedoyans constant

3 If y1(0) < y2(0), what continuity off (¢, y) assures thay; (t) < y»(¢) forall ¢ ?
Solution Two solution curveg; (t) andy-(t) can't meet or cross if they are continuous
curves: this will be true iff anddf/dy are continuous.

4 The equationdy/dt = t/y is completely safe ify(0) # 0. Write the equation as
ydy = tdt and find its unique solution starting fropf0) = —1. The solution curves
are hyperbolas—can you draw two on the same graph ?

Solution dy/dt = t/yleads tof ydy = [tdt andy? = > + C. If y(0) = —1 then
y(t) = —V/12 + 1. The hyperbolag? = t? + C are asymptotic to thé5° and—45°
linesy =t andy = —t.

5 The equationdy/dt = y/t has many solutiong = Ct in casey(0) = 0. It has

no solution ify(0) # 0. When you look at all solution curves= C't, which points
in thet, y plane have no curve passing through ?

Solution The solution curveg = C't (allowing all numberg™) go through all points
(t,y) with suitableC' = y/t—exceptthe points on the vertical line = 0 (other
than the origin(0,0) that all the linesy = Ct will pass through). You cannot solve
dy/dt = y/t with an initial value likey(0) = 1, because the right sidg/t would be
1/0.

6 Fory’ = ty draw the isoclinesy = 1 andty = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopesd?2). Sketch pieces of so-
lution curves that fit your picture between the isoclines.

Solution The solution curvesly/dt = ty havedy/y = tdt andlny = 3t* + ¢ and
y = exp (3t% 4+ ¢) = Cexp (5t?). Solution curves cross isoclingst,y) = s with
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that slopes! The arrows with that slope are tangent to the curves as they ass the
isocline

The solutions tg)” = y arey = Ce’. ChangingC' gives a higher or lower curve. But

y' = y is autonomous, its solution curves should be shifting right left!

Drawy = 2¢! andy = —2e¢! to show that they really améght-left shiftsof y = ¢!
andy = — e’. The shifted solutions tg’ = y aree!*¢ and— e!*¢.

Solution For all autonomous equatiorg/dt = f(y), the solution curves are horizon-
tal shifts of each other. In particular fgi(y) = y, the curves; = Cet shift right-left
asC increases-decreases.

Fory’ = 1 — 32 the flat linesy = constant are isoclines — y> = s. Draw the
linesy = 0 andy = 1 andy = —1. On each line draw arrows with slofge— 2.
The picture says that = andy = are steady state solutions. From

the arrows ory = 0, guess a shape for the solution cugve: (ef — e™t)/(et + e~ t).

Solution The picture will show the horizontal lings= 1 andy = —1 as “zeroclines”
wheref(t,y) = s = 1 —y? = 0. So those are steady state solution cupgs=Y =
1or—1.

The isocliney = 0 is ther-axis, along withf(t,y) = 1 — y?> = 1 = s. (The arrows
cross ther-axis at45 °, with slopes = 1.) So the solution curves arg-curves going
up from the liney = —1 to the liney = 1, rising at45° along thez-axis halfway
between those two lines.

The parabolay = ¢?/4 and the liney = 0 are both solution curves fay’ = /|y|.
Those curves meet at the point= 0, y = 0. What continuity requirement is failed
by f(y) = /|yl to allow more than one solution through that point ?

Solution The functionf(y) = +/|y| is continuous ay = 0 but its derivativelf /dy =

1/2+/]y| blows up (because df/0.) So two solutions can start from the same initial
valuey(0) = 0, and they do.

Suppose = 0 up to timeT is followed by the curve) = (¢ — T')2/4. Does this solve
y’ = /|y| ? Draw thisy(¢) going through flat isoclineg/|y| = 1 and2.

Solution Yes,y’ = \/|y| is solved by the constani{t) = 0. It is also solved by the
curvey(t) = (t — T)?/4 becausely /dt = (t — T)/2 equals the square root pf(t)|.

So solution curves can lift off the-axisy = 0 anywhere they want, and start upwards
on a parabola.

The equationy’ = y? — t is often a favorite in MIT’s course 18.03: not too easy.
Why do solutiongy(t) rise to their maximum op? = ¢ and then descend ?

Solution Below the parabola? = t (which opens to the right instead of opening
upwards) the right side afy/dt = y? — t will be negative. The solution curves have
negative slope and they can’t cross the rising parabola.

Construct f(¢,y) with two isoclines so solution curves gep through the higher
isocline and other solution curves gownthrough the lower isoclineTrue or false
Some solution curve will stay between those isoclindsontinental divide.

Solution We want the isoclingf(¢,y) = s = 1 to beabovethe isoclinef(t,y) =
s = —1. A simple example would b¢ (¢, y) = y. Then the equatiody/dt = y has
solution curvegy = Cet, C' > 0 goingup through the isoclingf(¢,) = 1 (which is
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the flat liney = 1). The curveg, = Ce with C < 0 go down throughy = —1. The
continental divide is the solution curve(t) = 0 with C' = 0. Certainlyy(t) = 0 does
solvedy/dt = y.

There is always a “continental divide” where solution cuer(léke water in the Rockies)
can’t choose between the Atlantic and the Pacific.

Problem Set 3.2, page 168

1

Draw Figure 3.6 for a sink (the missing middle figure) with= cie~2! + cpe?.
Which term dominates as— oo ? The paths approach the dominating line as they
go in toward zeroThe slopes of the lines are-2 and —1 (the numbers; ands,).
Solution Thecye™t term dominates at— oo since it decays at a slower rate.

Then y(t) = sin wt sinat
v = w(a? —w?) a(a? —w?)’
Draw Figure 3.7 for a spiral sink (the missing middle figuréjhwootss = —1 + 4.

The solutions arey = Cie fcost + Coe tsint. They approach zero because
of the factore—*. They spiral around the origin becausecof ¢t andsin ¢.

Solution The spiral goes clockwise in toward, 0). Not easy to draw to scale, by
hand!

Which path does the solution take in Figure 3.6yif= e + ¢'/2? Draw the
curve(y(t), y’(t)) more carefully starting at= 0 where(y,y’) = (2, 1.5).

Solution Ast — oo, the path of the pointy(t),y’(¢)) comes closer and closer to the
path fory = e!—because e* dominates the other termet/2. The path fory = e
has pointgy,y’) = (e!, e!) so it is a straight5 ° line in the(y, y’) plane.

Which path does the solution take around the saddle in Fig@iiey = e*/? + et ?
Draw the curve more carefully startingtat= 0 where(y,y’) = (2, —3).

Solution The functiony = e/ 4+ e~* comes from exponen%; and—1 (positive and
negative will give asaddle point The graph shows the spiral is unwinding clockwise
as it leaves the tight spiral and goes outward. For large dominant part ofy, y’)

will be (e!/2, Let/2) from the growing terme!/2 in y.

Redraw the first part of Figure 3.6 when the roots are equal= s; = 1 andy =
c1et + cotel. There is nose-line. Sketch the path foy = et + tet.

Solution y = et +te! hasy’ = 2e! +tet. The larger termie! gives(y, y') = (tet, tet)

on the45° line in they, y’ plane. Att = 0 it starts from(y(0),y'(0)) = (1,2).

The solutiony = e2* — 4¢? gives a source (Figure 3.6), wi = 2e?* — 4¢t. Starting
att = 0 with (y,y’) = (=3,—2), where is(y,y’) whene! = 1.1 ande?! = .25 and
et =27

Solution Substituting the valuels= In 1.1 andIn 0.25 andln 2, we get:
1. Foret = 1.1 we have(y, y’) = (—3.19, —1.98)

2. Foret = .25 we have(y,y’) = (—0.9375, —0.875)

3. Fore! = 2 we have(y,y’) = (—4,0)
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Those early times don’t show the situation for latgehen the dominant tere?? gives
(y,y") = (2!, 2¢%) and the path approaches a straight livith slope 2

The solutiony = e’(cost + sint) hasy’ = 2¢! cost. This spirals out because of.
Plot the pointy,y’) att = 0 andt = w/2 andt = , and try to connect them with a
spiral. Note that™? ~ 4.8 ande™ ~ 23.

Solution

1. Fort =0, (y,y') = (1,2)

2. Fort =%, (y,y') = (e™/2,0) ~ (4.8,0)

3. Fort =7, (y,y') = (—e™, —2e™) ~ (—23.1, —46.2)

Maybe we can see the path better by writiggy’) = e!(cost, cost) + ef(sint, cost).
The first term goes forward and back on #ie° line. the second term circles around
and spirals out because @f So we have a big circle around a moving slider.

The rootss; and s, are+2i when the differential equation is . Starting from
y(0) = 1 andy’(0) = 0, draw the path ofy(t),y’(t)) around the center. Mark the
points whert = /2, 7, 37 /2, 27. Does the path go clockwise ?

Solution The differential equationig’’ + 4y = 0. The solution starting &y, y') =
(1,0)is (y(t),y'(t)) = (cos 2t, —2 sin 2t). This is an ellipse in the equation

yQ + Z(y/)Q = cos® 2t + sin?2t = 1.

The path is clockwise around that elliptical center.

The equatiory” + By’ +y = 0 leads tos? + Bs +1 = 0. ForB = -3, -2, —1, 0,
1, 2, 3 decide which of the six figures is involved. FBr= —2 and2, why do we not
have a perfect match with the source and sink figures ?

Solution To determine which figure is involved, we solve the quadragjgation:

—B+vB2-4

s1 and sy are —a
B = —3 hass; = 225 ~ 0.38 and s, = 3£Y5 ~ 2.6. Sourcewith 0 < s; < s2
B = —2hass; =1 and s; = 1. Since 0 < s; = s5 we have asource
B = —1hass; = 1+T‘/5 and sy = 1+—5/§ Spiral Source (outward) Re(s;) = Re(s3) > 0
B = 0hass; =i and s; = —i. Since 0 = Re(s1) = Re(s2) we have aenter
B = 1hass; = =143 ands, = =143 Spiral Sink (inward) Re(s;) = Re(s2) < 0
B = 2hass; = -1 and s = —1. Since s; = s < 0 we have asink
B = 3hass; = 25¥5 ~ 26 and s, = =32¥5 ~ —0.38. 51 < s5 < 0. Thisis asink

The special cas® = 2 andB = —2 gaveequal rootss; = s». Then there will be a
factor “t” in the null solution. The path won't close on itself like ade or ellipse. As
it turns, it will go slowly outward from that factor.
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10 Fory” 4+ y’ + Cy = 0 with dampingB = 1, the characteristic equation will be

5?2 + s+ C = 0. Which C gives the changeover fromsink (overdamping) to a spiral
sink (underdamping) ? Which figure h&s< 0?

Solution The solutions to the quadratic equatign+ s + C = 0 are

—-1+£+v1-4C
2

s1 and sy are

The change from a sink to a spiral sink occur€at %. Those are sinks because the
real part ofs is negative. Wheid' is less than zero, we change to one positive root and
one negative root. Then the path becomeaddle

Problems 11-18 are aboutly /dt = Ay with companion matrices [ o 1 ] .

11

12

13

14

-C -B
The eigenvalue equation d + B\ + C = 0. Which values ofB andC give com-

plex eigenvalues? Which values BfandC' give \; = Ay ?
Solution Look at the solution to the quadratic equatioh+ BA 4+ C =0:

~B++vB?2-4AC -B++B?2-4C
24 - 2
Therefore wherB? < 4C we get complex eigenvalues.
On the other hand, wheR? = 4C we get\; = Ay = —B/2 (the square root ig).

Find A\; and ), if B = 8 andC = 7. Which eigenvalue is more important@ass oo ?
Is this a sink or a saddle?

Solution We solve the quadratic eigenvalue equationfpandX; :

_ VB2 — _ /64 - 98
A= B+vEB 4AO: 8+ v6d - 28 gives A\; = —7 and Ay = —1.

A 2
Sinces; < sy < 0 we have asink. The more negative, gives slower decay as
t — 0.

Why do the eigenvalues have + Ay = —B? WhyisAi Ao = C'?
Solution This refers to the eigenvalues of the companion matrix :

A1 and Ay =

[
A= {_(g _é] comes from Z;, _ y_zcy ~ By Theny!” = yJ isy/' + By +
Cyl =0.

The eigenvalued; and )\, are the roots oA%> + BX + C = 0 just as the roots; and
so are the roots 0f? + Bs + C = 0. We know from factoring intds — s1)(s — s2) or
(A — A1) (X — o) that the coefficient oA? is 1, the coefficient of\ is B = —\; — Ao,
and the constant form 8§ = \; times\s.

Which second order equations did these matrices come from ?

A = [ (1) (1) } (saddle) Ag = { _(1) (1) ] (center)

Solution Write the matrix equation’ = Ay as two coupled first order equations. For
A we get
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3/1, =Y2

Y2 =1
Theny{’ = y4 = y; and the second order equationji¥ = y.
The second matrid, givesy; = y» andys = —y.

Theny{’ = y5 = —y; and the second order equationji¥ + y = 0. (Notice that we
also findys' = —y2.)

The equationy” = 4y produces a saddle point é1,0). Finds; > 0 andsy < 0
in the solutiony = cie®1? + cae®2?. If c1ca # 0, this solution will be (large) (small) as
t — oo and also ag — —oo.

The only way to go toward the saddlg, ') = (0,0) ast — ccisc; = 0.
Solution Assuming a solution of the form(t) = e*t gives:

y" —4y =0
s2e5t _ 4est —
s?2—4=0
s =22
Therefores; = 2 ands; = —2. The solution becomeg = cie?! 4 cye~ 2. As

t — oo, thee?! term will grow unlesg; = 0. Inthatcaséy,y’) = (cae ™2, —2coe %)
goes to the saddle poiff, 0).

If B =5andC = 6 the eigenvalues arg, = 3 and)» = 2. The vectorey = (1, 3)
andv = (1, 2) areeigenvectorsf the matrixA : Multiply Awv to get3v and2wv.

Solution v = (1, 3) is an eigenvector with eigenvalug = 3:

o2 -

Similarly v = (1, 2) is an eigenvector with eigenvalug = 2:

-5 3] ] =[] -2s]

Notice that these eigenvectors of the companion mattave the formv = (1, A).
In Problem 16, write the two solutiong = vert to the equationyy’/ = Ay.
Write the complete solution as a combination of those twatsmis.

Solution The eigenvectors; = (1,3) andvz = (1,2) give two pure exponential
solutionsy = ve :
2t

egt e
Y1 = |:3e3t:| and Y2 = |:262t:| .

The complete solution ig(t) = ¢1y1 + coy2. Two constants to match two components
of the initial vectory(0) at¢ = 0. Theny(0) = c1v1 + c2v2.
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18

19

20

The eigenvectors of a companion matrix have the forea (1, \). Multiply by A to
show thatdv = \v gives one trivial equation and the characteristic equatfon B+

C=0.
0 1][1]_,[1 i< A =
—C B || AT A —C—BXx =)\2

Find the eigenvalues and eigenvectorsiof [ :f é }

Solution The eigenvectors of a companion matrix have the special foen(1, ), as
the problem statement shows—becauge — BA = A2 from the eigenvalue equation
A2+ BA+C=0.

The exampled is nota companion matrix!

A= {3 1] has eigenvectore; = [}] and v, = [

1 .
1 3 ]Wlth A =4 and \, = 2.

-1

3 111 1 31 1 1
HElIESE b)) =2
The equation foA is A2 — 6\ + 8 = 0 with 6 coming from the trac8 + 3 and8 coming

from the determinari — 1.

An equation is stable and all its solutions = c;e't + c2e2! go to y(oo) = 0
exactly when

(s1 <0o0rsy; <0) (s1 < 0andsy <0) (Re s1 < 0and Re s2 < 0)?

Solution The correct answer is (Re< 0 and Resy < 0).
If Ay” + By’ + Cy = D is stable, what ig/(cc) ?
Solution The steady state solution to this equation is the congjésd) = D/C.

Because the equation is stable, the null solutig(t) will go to zero as — co. The
rootss; ands, have negative real parts.

Problem Set 3.3, page 182

1

If y/ = 2y + 3z + 4y? + 522 andz’ = 6z + Tyz, how do you know that” = 0,
Z = 0 is a critical point ? What is the by 2 matrix A for linearization around
(0,0) ? This steady state is certainly unstable because .

Solution Herey’ = f(y,z) andz’ = g(y,2) havef = g = 0 at the point(y, z) =
(0,0). Then this point is a critical point (stationary point). Thacobian matrix of
derivatives at that poir(D, 0) is

_ { (2) g ] at (y,2) = (0,0).

The eigenvalues of this triangular matrix &@nd6 (on the diagonal). Any positive
eigenvalue means growth and instability.

of/oy Of/0z | | 2+8y 3+10z
dg/0y 9Dg/dz | — Tz 6+ Ty
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2 In Problem 1, changeéy and6z to —2y and —6z. What is now the matrix4 for
linearization aroundo, 0) ? How do you know this steady state is stable ?

Solution
A:[ —24+8y 3+10z }

-2 3 .
7y 64Ty |~ [ ] now has eigenvalues=—2, —6: stable

0 —6

3 The systeny’ = f(y,z) = 1 —y?> — 2z, 2/ = g(y,2) = —5z has a critical point
atY = 1, Z = 0. Find the matrixA of partial derivatives off andg at that point:
stable or unstable ?

Solution Heref =g =0when(Y, Z) = (1,0).
of/oy 0of/o —oy -1 _9 1
[ 39?35 39;8:2 } = { % _5 } = { 0 —5 } . Stable

4 This linearization is wrong but the zero derivatives arerect: What is missing?
Y =0, Z = 0is not a critical point ofy’ = cos (ay + bz), 2’ = cos (cy + dz).

y" | | —asin0 —bsin0 y| |00 Yy
z' | 7 | —esin0 —dsin0 z| 100 z |-

Solution Atthe point(Y, Z) = (0,0), the functionsf = cos(0-+0) andg = cos(0+0)

are equal td.. This is not a critical point.

5 Find the linearized matri¥d at every critical point. Is that point stable ?
! __ I __ 3
y'=1-yz Yy =-y —z
(a) P — (b) 2=yt 23

Solution (a) f(y,2) = 1 — yz andg(y, z) = y — 2> are both zero whep = 23 and
thenl —yz = 1 — 2% = 0. ThenZ = 1 goes withY = 1 andZ = —1 goes with
Y = —1: two critical points.

a- [ ][ )= [ 3] e [1 4]

The eigenvalues solv&t(A — AI) = 0.

At (1,1) det{_ll_)\ _?)_i/\}:)\2+4/\+420, A=—2,-2

1-x 1 42 -~ _
1 _3_A] =XN4+2\-4=0, A=-14++5

Then(Y, Z) = (1,1) is stablebut (-1, —1) is unstable (because-1 + v/5 > 0).

(b) f = —y®> — z andg = y + 2> are both zero atY,Z) = (0,0) and (1, —1)
and (—1,1): three critical points becausg = 0 givesz = —y* and theng = 0
givesy = y“, leading toy = 0,1, or —1. The stability test applies to the matrix of
derivatives:

-3y -1

322

At (—1,—1) det {

A:

] has det(A — M) = A% + \(3y% — 32%) + 1 — 93222

At (0,0) X +1=0and\=+i Unstable (neutrally stable)
At (1,—1) and (—1,1) A>—-8=0 Unstablewith A\ = /8.



3.3. Linearization and Stability in 2D and 3D 89

6 Can you create two equatiop$ = f(y, z) andz’ = g(y, 2) with four critical points:
(1,1)and(1,-1) and(—1,1) and(—-1,-1) ?

| don’t think all four points could be stable ? This would bieelia surface with four
minimum points and no maximum.

Solution An example would bg’ = y2 — 22 andz’ =1 — 22. Thenz> -1 =10
andy? — 2% = 0 have the four point§Y, Z) = (+1, +1) as critical points. In this case
the linearized matrix (Jacobian matrix) is

gg;gg gggi ] = [ 2Oy :;z } andonly (Y, Z) = (—1,1) is stable

7 The second order nonlinear equation for a damped pendulythisy’ + siny = 0.
Write ~ for the damping terny’, so the equation is’ + z + siny = 0.

Show thatY” = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show thaty” = 7, Z = 0 is an unstable critical point at the top of the pendulum.

8 Those pendulum equatiops = z andz’ = —siny — z have infinitely many critical
points! What are two more and are they stable ?

Solutions to 7 and 8 The systemy’ = z andz’ = —z — sin y has critical points when
z = 0 andsiny = 0 (this allows all valuesy = n).

The Jacobian matrix of derivatives ofand—z — sin y is a companion matrix :

A— 0 1| 0 1 or 0 1
| —cosy —1 | | -1 -1 1 -1

We have— cosy = —1aty = 0, 27, +4x,...and— cosy = +1 aty = +x,+3m, ...
The eigenvalues satisfy? + A\ +1=00r\2 + ) —1=0:

A =1(-1+£+=3) = 3(-1+iy/=3) isstable aty = 2n.

A =1(-1£+/5) isunstable at y = (2n + 1)x.

The pendulum is stable hanging straight down (at 6:00) arstiabte when balanced
directly upward (at 12:00).

9 The Liénard equation” + p(y)y’ + q(y) = 0 gives the first order systep! = > and
2! = . What are the equations for a critical point ? When is it &&bl

Solution The coupled equations agé = z andz’ = —p(y)z — q(y). These right
sides are zero (critical point) when= 0 andq(y) = 0.

The first derivative matrix is
of /oy 0f/)0z | _ 0 0o | _ 0 1
dg/0y 0g/0z | | —p'z—q¢' -p | | -C =B |’

That companion matrix is stable (according to Section 3HgmB > 0 and C > 0.
10 Are these matrices stable or neutrally stable or unstable¢e or saddle) ?

EI R T e



90

11

12

13

Chapter 3. Graphical and Numerical Methods

Solution The stability tests arerace < 0 anddeterminant > 0. This is because
determinant= (A1)(A2) and trace= sum down the main diagonal A\; + \y. Apply
these tests to find

stable, unstable (saddle withdet < 0), stable, unstable, stable
The second matrix has = +3: which gives undamped oscillation and neutral stability.

Suppose a predatereats a prey that eats a smaller prey:.
de/dt = —x + xy Find all critical pointsX, Y, Z
dy/dt = —zy +y +yz Find A at each critical point
dz/dt = —yz + 2z (9 partial derivatives)

Solution The right hand sides arg1 — y) andy(—z + 1 + z) andz(—y + z). These
are all zero athree critical points (X,Y, Z): (0,0,0) (0,2,—1), (1,1,0)

(Follow the two possibilitiest = 0 or Y = 1 needed forX (1 — Y') = 0.) The matrix
of first derivatives of those right hand sides is

1—y —x 0
[ -y —r+1+4+z Y ] . Substitute the three critical vectofsX,Y, Z) :
0 —z 2—y

A:

1 0 0 -1 0 O 0 -1 0

0 1 0 1 l -2 0 2 ‘| l -1 0 1 ‘|

0 0 2 0 1 0 0 0 1

The dampinginy”+(y’)?+y = 0 depends on the velocity = z. Thenz’+23+y =

0 completes the system. Damping makes this nonlinear systdnies—is the linearized
system stable ?

Solution y’ =z andz’ = —y — 23 has only(Y, Z) = (0, 0) as critical point:

A = first derivative matrix= [ _01 _;ZQ ] has determinant 1, trace= —3z%:
unstable
Determine the stability of the critical points, 0) and(2,1):
/ / 2
y =—y+dztyz y' =y 4z
@ 2= —y— 224 2yz (0) 2! =y — 22%

Solution (a) The first derivative matrix dty, z) = (0,0) or (2,1) is

ol z=1 44y | | -1 4 0 6 | (unstable)
A_[z—l 2y—2}_[—1 —2](Stab'e)°r{1 2} (trace 2)

(b) The first derivative matrix aty, z) = (0,0) or (2, 1) is (replace x by z)

| -2y 4 | 0 4 | (unstable) -4 4
A_{ 1 —8z3]_ [1 O] (race0) ' [ 1 _8}(stable)
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Problems 14-17 are about Euler’s equations for a tumbling bx.

14

15

16

17

The correct coefficients involve the moments of inedtjal,, I3 around the axes.
The unknowng:, y, z give the angular momentum around the three principal axes:
dx/dt = ayz with a=(1/I3 —1/13)
dy/dt = bxz with b= (1/ — 1/I3)
dz/dt = cxy with  ¢= 1/, —1/I).
Multiply those equations by, y, ~ and add. This proves that + y? + 22 is .
Solution Multiply by «, y, andz to get
zr! = aryz
yy' = bryz
22! = cryz

2(@? +y* +2%) = (a+ b+ c)zyz = 0 forthe givena, b, c.

Thenz? + 4% + 22 = constantbecause its derivative is zero.
Find the 3 by 3 first derivative matrix from those three right hand sidésg, h.
What is the matrixA in the6 linearizations at the santecritical points ?
Solution The first derivative matrix in Problem 14 is

of/0x Of/0y Of/0z 0 az ay

[ 0g/0x 0g/dy 0g/0z 1 = [ bz 0 bz 1

Oh/O0x Oh/Oy Oh/Oz cy cx O

The 3 right sides are zero at the 6 critical poifitd, 0, 0), (0, =1, 0), (0,0, +1).

0 0 0 0 0 +a 0 4a 0
0 0 b, 0 0 0|, | £ 0 0
0 +c 0 tc 0 0 0 0 0

All six points are neutrally stableRe A = 0).

You almost always catch an unstable tumbling book at a momden it is flat.
That tells us: The poink(t), y(t), z(¢t) spends most of its time (near) (far from)
the critical point(0, 1, 0). This brings the travel timeinto the picture.

Solution This neat observation was explained to me by Alar Toomre. vidhecity
(f,g9,h) = (ayz,bxz, cxy) is low near a critical point where, y, z are small. Then
the book spends most tirmear the point where the book is flat and easy to catch.

In reality what happens when you

(a) throw a baseball with no spin (a knuckleball) ?

(b) hit a tennis ball with overspin ?

(c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw) ?

Solution (a) The knuckleball is unstable—hard for the batter to judge
(b) The topspin brings the tennis ball down faster with a bighounce.
(c) The golf ball slices to the right off the fairway.

(d) The basketball with underspin is more stable with lessnice around the rim.
It is more likely to end up in the basket.
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Problem Set 3.4, page 189

1 Apply Euler's methody,, 11 = yn + At f,, to findy; andy, with At = 1 :

@y'=y Oy =y> ©y' =2ty (all with y(0) = yo = 1)
Solution (@) y1 = yo + At yo = 1+ At = 1.5 yo = (1 + At)? =y, =
(1+ At =225

By =yo+ At 2 =1+At=15 yo =y +Aty? =1+ At + AL +2At +
At?) = (1+ At)(1 + At + At?) = (1.5)(1.75)

(©y1 = (1+2t+ At)yo = 1 because =0 y2 = (1 + 2t + At)y; = 1.5 because
t = At.

2 For the equations in Problem 3, find andy, with the step size reduced vt = %.
Now the valuey, is an approximation to the exacgj(t) at what time¢?
Thenys, in this question corresponds to whigh in Problem 3 ?

Solution With At = %, y2 Will now be an approximation to the true SO|Uti@I(I%)
becaus@At = 3.

@y =1+At=5/4=1.35 Yo = (1+ At)? = 25/16
(D)yr =1+ At =125 ve=01+3)1+3+5) =) (%)
©uy =1 yp=(1+2t+ Aty = (1+3) = (2)
3 (a) Fordy/dt = y starting fromyy = 1, what is Euler'sy,, whenAt = 1?

(b) Is it larger or smaller than the true solutign= ¢! at timet = n ?

(c) What is Euler'sj;,, whenAt = § ? This is closer to the trug(n) = e”.

Solution (@) yn+1 = (1 + At)y, = 2y, SOy, = 2"

(b) 2™ is smaller thare™

(©) Ynt1=(1 4 Ab)yn = 2y,.. Thenys, = (1+1)*" is above2" becausd1+1)*> 2.

4 Fordy/dt = —y starting fromy, = 1, what is Euler's approximation, aftern steps
of size At ? Find all they,,’s whenAt = 1. Find all they,,'s when At = 2. Those
time steps ar#oo largefor this equation.

Solution y,4+1 =Y, — Aty, S0y, = (1 — At)"yp.
If At =1thenall ofYy,Y5,Ys,... are zero.

If At =2thenY,,+1 = —y, andy, = (—1)".

The approximation will blow up foAt > 2.

In reality it seems useless fdxt > 0.1.

5 The true solution ta)’ = 3?2 starting fromy(0) = 1is y(t) = 1/(1 — t). This
explodes at = 1. Take3 steps of Euler's method withht = % and take4 steps
with At = i. Are you seeing any sign of explosion ?

Solution With At = 1, Euler's method fory’ = y* becomesy,, 11 = y,, + Aty2.
Three steps wit\¢ = £ and four steps witii\t = 1 give
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10

Yi=35 Y2a=23% ys=__ =% Y= Ys=__ Ya=__
We are not reaching infinity at time= nAt¢ = 1 but asAt — 0 andn = 1/At the
numbersy,, will keep growing past any bound.

The true solution taly /dt = —2ty with y(0) = 1 is the bell-shaped curue= et
decays quickly to zero. Show that step + 1 of Euler's method gives
Ynt+1 = (1 — 2nAt?)y,. Do they,,’s decay toward zero ? Do they stay there ?

Solution A step of Euler's method starting at timte= nAt givesy,11 = yn —
2(nAt)y,. In the early steps we are multiplying, by 1 — 2nAt¢ which is normally
less thanl. So they, are decreasing at first. But whenis larger thanl /At¢, we are
multiplying by a number below-1. At that point they,, start growing and changing
sign at every step : serioursstability.

The equationg’ = —y andz’ = —10z are uncoupled. If we use Euler's method for
both equations with the sana&t between% and2, show thaty,, — 0 but|z,| — co.

The method is failing on the solution= ¢~ that should decay fastest.

Solution The Euler formulas arg, 11 = (1 — At)y, andz,+1 = (1 — 10A¢)z,. For
time stepsAt betweenll0 and2, they factor hagl — At| < 1. But thez factor has

|1 — 10At| > 1. The true solutions arg = Ce~* andz = Ce~ 10t

But that quickly decreasing has a quickly increasing,, when|1 — 10A¢| > 1:
instability.

What valuesy; andy, come frombackward Eulerfor dy/dt = —y starting from
yo = 1?2 Show thay? < 1 andy? < 1 even if At is very large. We havabsolute
stability: no limit on the size ofAt.

Solution Backward Euler fory’! = —y iS yp41 — yn = —Aty,i1 (NOt —Aty,,).
Theny,+1 = y./(1 + At). For any At that factot /(1 + At) is less thanl : absolute
stability.

The logistic equation’ = y—y? has anS-curve solution in Section 1.7 that approaches
y(oo) = 1. This is a steady state becauge= 0 wheny = 1.

Write Euler’s approximationy,, 1 = to this logistic equation, with stepsize
At. Show that this has the same steady stgig; equalsy,, if v, = 1.

Solution y’ = y—y? is approximated by,, .1 = v, +At(y, —y2). This equation has
a steady state whep, 1 = y,—and this requires thAt factor to be zeroy,, — y2 =
0. So the two steady states agg 1 forever) and ¢,, = 0 forever).

The important question in Problem 3 is whether the steadg gta = 1 is stable
or unstable. Subtradtfrom both sides of Euler's,, 1 = y, + At(y, — y2):

Ynt1 — 1= yn + At(yn — 9721) — 1= (yn — 1)(1 — Atyn).
Each step multiplies the distance franby (1 — Aty,,). Near the steady., = 1,
1 — Aty, has sizg1l — At|. For whichAt is this smaller than to give stability ?

Solution y,, — 1 is the distance from steady state. The equation in the proshows
that this distance is multiplied at each step by a fadter Aty,,. This factor has
|1 — Aty,| < 1 when0 < Aty,, < 2. Wheny, is nearl, this meansAt can be
almost2 for stability.
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12

13

14
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Apply backward Euley?, | = y,+AtfB | =y, +At [yfﬂ - (yfﬂ)?} to the logis-

tic equationy’ = f(y) = y —y% Whatisyf if yo = 3 andAt = 12
You have to solve a quadratic equation to figfd. 1 am finding two answers foy”.

A computer code might choose the answer closegto

Solution At each new time step, Backward Euler becomes a quadratitiequfor
Yn41 in the logistic equation. Ifiy = 1 andAt = § the equation fog; (= y?) is

At(y1)* + (1 - At)y1 —yo =0 OR iy% + Zyl - % = 0.
Multiply by 4. The solutions of? + 3y; — 2 = 0 are
Y1 = #ﬁ The better choice near %) is yP = #ﬁ
For the bell-shaped curve equatigh = —2ty, show that backward Euler divides

yn by 1 + 2n(At)? to find y2 ;. Asn — oo, what is the main difference from
forward Euler in Problem 3?

Solution Backward Euler fory’ = —2ty iS yp11 — Yn = —2tAtyn i1 OF Ypy1 =
Yn/ (1 + 2t + Ab).

That fraction is smaller tham for all ¢t and At. Then the numberg,, are steadily
decreasing as — oo, like the true solutiony(t) = et (Forward Euler was hopeless
in Problem 6, withY;, increasing and changing sign at every step beyordl /At.)
The equationy’ = \/m hasmany solutionstarting fromy(0) = 0. One solution
stays aty(t) = 0, another solution iy = ¢*/4. (Theny’ = ¢/2 agrees with,/7.)
Other solutions can stay at = 0 up tot = 7, and then switch to the parabola
y = (t — T)?/4. As soon ag leaves the bad poinj = 0, wheref(y) = y'/?
has infinite slope, the equation has only one solution.

Backward Eulery; — At\/w = yo = 0 gives two correct valueg?® = 0 and
yP = (At)%. What are the three possible valueg/§f?

Solution Backward Euler for? will be y2 — At\/|y=| = Yi. If yP = 0 theny?

can be0 or (At)2. If yP = (At)? thenz = /|y?| solvesz? — Atz — (At)? = 0.
Again two possibilities :
1

Because\/m is continuous but its derivative blows upat 0, multiple solutions are
possible.

Every finite difference person will think of averaging fomdand backward Euler :
. 1 1
Centered Euler/ Trapezoidal ¢S, — yn = At <§fn + Ef'?“)'

Fory’ = —y the key questions amccuracyandstability. Start withy(0) = 1.
1— At/2

1+ Aae/2 7™

11 .
y$ —yo = At (— %0 — ny) gives y& =

Stability Show thafl — At/2| < |1 + At/2| for all At. No stability limit onAt.
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Accuracy Fory, = 1 compare the exaq); = e 2t = 1 — At + %Aﬁ —
withy¢ = (1 - 2A8)/(1— 1At = (1 - LAH(1 — LAt + 2A2 — ...
An extra power ofAt is correct:Second order accurach good method.

Solution Stability is |yn+1| < |yn| for an equation likey’ = —y where the true
solutiony = e~ is decreasing. In this problem

1—At/2 1—At/2 At At
¢ / 1= Atj2 1+7’>’1——

yo has growth factor < 1 because

T TTA2 1+ At)2 2

Accuracy is decided by comparing to the exacy;. The two series agree in the terms
1 and—At and 1 (At)?: Second order accuracybecause the¢At)? error appears in
1/At time steps to reach the typical time= 1. Sign correction in text to:

y$ = (1—%&) / <1+%At> _

The rest is correct and produckes- At + %(Azﬁ)2 ... as required.

The website has codes for Euler and Backward Euler and Cented Euler. Those
methods are slow and steady with first order and second ocdaracy. The test problems
give comparisons with faster methods like Runge-Kutta.

Problem Set 3.5, page 194

Runge-Kutta can only be appreciated by using it. A simple cod is on math.mit.edu/dela.
Professional codes are ode 45 (iMATLAB) and ODEPACK and many more.

1 Fory’ = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta
give these approximationg to the exacy(At) = e®*:

Yy =1+ At + %(At)Q i =14 At + %(At)Q + %(At)3 + i(At)‘*
Solution Simplified Runge-Kutta (equation (1) in this section) whée- f (t,y)=vy:

1 1
Yntl = Yn + At |:§f(tn7yn) + §f (tn+17 yrl?illcr)]

1 1
=yn + At [Eyn + 3 (Yn + Atyn)]

=y, + Aty, + %(Aﬁ)yn (3 good terms o&Aty,,)
Full Runge-Kutta is in equation (5)—now applied whgf, y) = y:

k1 :lyn ks :1 (3/71"‘g (yn'i‘gyn))
2 2 2 2
1
2

+£ k —l + At +£ +§
Yn B Yn 4 = 5 Yn Yn 5 Yn 5 Yn

ko =
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Then the Runge-Kutta choice fgy, .1 is correct throughlfAt)*!

At At At At
yn+?(k$1+2k2+2/€3+/€4):yn |:1+?+?<1+7)+

B (1A (1 &)Y 8 (g B0 (1 81)))

— 1 2 1 3 1 4

= Un {1 + At + 2(At) + G(At) + 24(At) }
With At = 0.1 compute those numbegg andy% and subtract from the exagt=
eAt. The errors should be close tat)3 /6 and(At)® /120.

Solution Whenyy = 1 andAt = 1—10, the first step in the solution above gives

Simplified Runge-Kuttd + & + % (%)2 =1.105.

1o, 1(1N2 113 1 r1y4 1 1 1 1
Runge-Kuttal + 75 + 5 (75)” + 5 (15)" + 31 (f5) = 16 + 200 + 5000 T 0000 =
1.1051708.

The exact growth factor isxp (1) = 1.1051709. Error10~7 is nearl0—°/120.

Those valuegy andyf** have errors of ordefAt)? and(At)°. Errors of this size at
every time step will produce total errors of size and attimeT’, from N
steps of size\t = T'/n.

Those estimates of total error are correct provided errond drow (stability).

Solution Local errors of sizé At)? or (At)® produce global errors of sizgAt)? or
(At)* after1/At—provided the system is stable and local errors don’t grow.
dy/dt = f(t) with y(0) = 0 is solved by integration wheyi does not involvey.
From timet = 0 to At, simplified Runge-Kutta approximates the integraf ¢f) :

f(At)
1 1 at f(0)
yY = At <§f(0) + §f(At)) is close to y(At) = /f(t)dt
0 0 At

Suppose the graph ¢f(¢) is a straight line as shown. Then the region isegpezoid
Check that its area is exactly. Second order means exact for lingar

Solution The area of a trapezoid {base) (average height) = (A¢t)(f(0)+ f(At))/2.
This is exactly the answer chosen by simplified Runge-Kutta.

Suppose again that does not involvey, sody/dt = f(t) with y(0) = 0. Then full
Runge-Kutta front = 0 to At approximates the integral ¢ft) by 37K :

Yt = At (c1 £(0) + cof (At/2) + s f(AL)) . Find c1, ¢z, cs.

At
This approximation tof f(t) d¢ is called Simpson’s Rule. It ha€" order accuracy.
0

Solution Full Runge-Kutta allows the top edge of the trapezoid talmwed: it is the
graph of a nonlineaf(t). The area under this curve is well approximated by Simpson’s
Rule:
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1 4 At 1
area =~ At [Ef(o) + Ef <7> + Ef(At)} .

If you apply Runge-Kuttatg’ = f(t) from 0 to At, with the right hand side indepen-
dent ofy, the result is

ki = %f(o) ka = %f (%) ks = %f (%) ka = %f (89)

At At 4At At
?(/{14—2]@-‘1—2/{34—/{4) = gf(())-i-?f (7

6 Reduce these second order equations to first order sygtéms f (¢, y) for the vector
y = (y,y'). Write the two components af” (Euler) andyy .
@y" +yy' +yt=1  (B)my” +by’ +ky = cost
Solutions to Problems 6 and Mrite z for y’. The first order systems are

@y == (b)y y' ==
4

) + %f (At) : Simpson’'s Rule

2 =1—-yz—y mz' = —ky — bz + cost

Then Euler's method giveg?”, 2) from (yo, 20) :

E
Y Yo 20
2z 20 1 —yoz0 — (20)
B z
SR S L N
mzf mzo —kyo — bzg + cos0

Simplified Runge-Kutta findsy?, z©) from (yo,29) by addinghalf of those Euler
correctionglus half of the updated correction:

@ v [w ] At] LA A

24 20 2 | 1—yoz0 — (20)* 2 | 1-yfaf = (D)
(b) y1s | Yo At | Zo n At | 2P

mzy 20 2 | —kyo... 2 | —kyf —b2F + cos At

8 Fory’ = —y andy, = 1 the exact solutiony = e~* is approximated at timé\¢ by 2
or3orbterms:

1

yP=1-At yf = 1—At+%(At)2 Yyt = 1—At+%(At)2—%(At)3+24

(At

(a) With At = 1 compare those three numbers to the exaét What errorE ?

(b) With At = 1/2 compare those three numbers:to/2. Is the error neaF/ /16 ?

Solution (a) At = 1givesyf’ =0 yf =1 i =2 =

2 .375 compared to the
exacte™! =.368 ETK =.007.
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(b) At =LgivesyP =1 yf =3 yfK= % =.60677 e /2 =.60653
EFK = 00024.
Two steps withA¢t = £ would leave an error abo(.00024) = —.00048 which is
close t0.007/16.

Fory’ = ay, simplified Runge-Kutta giveg;,;, = (1 + aAt + 1(aAt)?)ys,.
This multiplier ofy,, reached — 2 + 2 = 1 whenaAt = —2: the stability limit

(Computer experiment) For N = 1,2,...,10 discover the stability limit, = Ly
when the series far—* is cut off afterN + 1 terms:

1 3 1 N| _
L0 sl =1

1
1-L+=L%—
*3 6

We knowL = 2 for N = 1 andN = 2. Runge-Kutta haé = 2.78 for N = 4.
Solution The stability limits Ly for N = 1,. . .,10 come from MATLAB:
2.0 2.0 2513 2785 3.217 3.55 3.954 4.314 4.701 5.070.



