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Chapter 2. Second Order Equations

Problem Set 2.1, page 79

1

Find a cosine and a sine that soW&y/dt?> = —9y. This is a second order equation
S0 we expectwo constant€’ and D (from integrating twice) :

Simple harmonic motion  y(¢) = C cos wt + D sin wt. Whatisw ?

If the system starts from rest (this meahg dt = 0 at¢ = 0), which constanC or D
will be zero?

Solution Lettingy(t) = C cos(wt) + D sin(wt):
d2
%XQJ + 9y = —w?C cos(wt) + 9C cos(wt) — w? sin(wt) + 9 sin(wt) = 0
w=3

Differentiatingy(t) and equating to zero at tinte= 0 gives us:
y'(t) = —Cwsin(wt) + Dw cos(wt) = 0
Att=0:Dw=0—-D=0

In Problem 1, whichC' and D will give the starting valueg(0) = 0 andy’(0) =17
Solution y(0) = C cos(w0) + D sin(w0) = 0 givesC' = 0
Differentiatingy(t) and equating ta at timet = 0 gives us:

'0) — Duw — _1_1
y'(0)=Dw=1 andD_w =3
Draw Figure 2.3 to show simple harmonic motign= A cos (wt — «) with phases
a=m7/3anda = —7/2.

Solution Notice thatA is the maximum heighfiax. Att = 0 we seey = A cos(—a) =
A cosa.

Suppose the circle in Figure 2.4 has radtuand circular frequency = 60 Hertz.
If the moving point starts at the anglet5°, find its z-coordinateA cos (wt — «). The
phase lag isx = 45°. When does the point first hit theaxis ?

Solution f = w/27 = 60 Hertz is equivalent tav = 1207 radians per second.
With magnitudeA = 3 anda = —45° = —x/4 radians,A cos(wt — ) becomes
3 cos(1207t + 7/4). The point going around the circle hits theaxis when that angle
is a multiple ofw. The first hit occurs at207t + n/4 = = and120¢ = 3/4 and

t = 3/480 = 1/160.

If you drive at60 miles per hour on a circular track with radiis= 3 miles, what is
the timeT for one complete circuit? Your circular frequencyfis= and your
angular frequency is = (with what units ?). The period i8.

Solution The distance around a circle of radills= 3 miles is27R = 67 miles.
The timeT for a complete circuit a60 miles per hour i¥" = 67/60 = 7 /10 hours.
FromT = 1/f = 2x/w the circular frequency i = 10/ cycles per hour and
w =27 f =27 /T = 20 radians per hour.
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The total energy in the oscillating spring-mass system is 9
E = kinetic energy in mass- potential energy in spring= % <d—y) + gyz.
ComputeFE wheny = C cos wt + D sin wt. The energy is constant!
Solution y = Ccoswt + Dsinwt has dy/dt = —wCsinwt + wD coswt.
The total energy isE = $mw?(C? sin® wt — 20D sinwt coswt + D? cos? wt)
+ 1k(C? cos® wt + 2CDsinwt coswt + D? sin® wt).
Whenw = \/k/—m andmw? = k, usesin? wt + cos? wt = 1 to find

1 1
E = 5Ic (C? 4+ D?) (sin® wt + cos® wt) = 5l<:(02 + D?) = constant

Another way to show that the total enerfyis constant :
Multiply my” + ky = 0 by y’. Then integratemy’y” and kyy’.
Solution (my” + ky)y’ = 0is the same a%(%myﬂ + $ky?) = 0.

This says that? = Lmy’? + 1ky? is constant.

A forced oscillation has another term in the equation afidos wt in the solution:
d2
Wg—i—ély:Fcos wt has y = C cos 2t + D sin 2t + A cos wt.

(a) Substitute; into the equation to see ha@ and D disappear (they giveg,). Find
the forced amplitudet in the particular solutiosy, = A cos wt.

(b) In casew = 2 (forcing frequency= natural frequency), what answer does your
formula give forA ? The solution formula fogy breaks down in this case.

Solution (a) The frequencyw = 2 gives the null solutiong = C cos 2t + Dsin 2t :
The choice of4 gives a particular solutiony, = A coswt. Substitute thig,, :
yo+dy, = (—w? +4)Acoswt = Fcoswt and A = £

4—w?"’
(b) w = 2 leads toA = oo and that solutiony, breaks down resonance (The correct
yp Will include a factort)
Following Przoblerrs, write down the complete solutiap, + y, to the equation
d7y

m—— +ky = I cos wt With w # w, = \/k/m (no resonance)

The answeE‘ljthas free constants andD to matchy(0) andy’(0) (A is fixedby F).

Solution y =y, + yp = C cos (1/%15) + Dsin (1/%15) + k_—;?wQ coswt.

Suppose Newton’s Las = ma has the forcd’ in the samedirection as: :

my” = +ky including " = 4y.
Find two possible choices afin the exponential solutiong= e*!. The solution is not
sinusoidal and is real and the oscillations are gone. Ngus unstable.

Solution The exponentsip,, = CetV*/™ 4 De~tVE/™ are now real. Those numbers
++/k/m come from substituting = ¢*¢ into the differential equation:

my” — ky = (ms* — k)e** =0 when s = \/k/m and s = —\/k/m.
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Chapter 2. Second Order Equations

Here is afourth order equation: d*y/dt* = 16y. Find four values ofs that give
exponential solutiongy = e*!. You could expect four initial conditions op:
y(0) is given along with what three other conditions ?

Solution Substitutey = ¢** in the differential equation to finel* = 16. This has four
solutions :s = 2, —2, 2i, —2i. The constants ip = cie? + cpe™2 + c3e? 4 cie 2%
are determined by the initial valug$0), y’(0),y"(0),y"(0).

To find a particular solution tg;” + 9y = e, | would look for a multiple
yp(t) = Ye of the forcing function. What is that numbé&f? When does your
formula giveY = oo ? (Resonance needs a new formula¥oy

Solution Substitutey, = Ve to find (¢ + 9)Ye = e andY = 1/(c* 4+ 9). This
is called the “exponential response function” in Sectigh Zhe resonant cagé = co

occurrs when®> + 9 = 0 or ¢ = £3i. Then a new formula fog(t) involvestect as
well ase“’.

In a particular solutiony = Ae™? to y” + 9y = €™!, what is the amplituded ?
The formula blows up when the forcing frequengcy= what natural frequency ?

Solution Substitutey, = Ae™? to find i?w? Ae™? + 9Ae™*t = ™. With i? = —1
this givesA = 1/(9 — w?). This blows up whe® — w? = 0 at the natural frequency
wnp = 3.

If y(0) > 0 andy’(0) < 0, doesx fall betweenr/2 andr or betweer8z/2 and2r ?
If you plot the vector fron{0,0) to (y(0), y’(0)/w), its angle isx.

Solution If y(0) > 0 andy’(0) < 0 thena falls betweer8w/2 and2x. This occurs
because the vector froff, 0) to (y(0),y’(0)/w) is in the fourth quadrant.

Find a point on the sine curve in Figure 2.1 whgre- 0 butv = 3’ < 0 and also
a = y"” < 0. The curve is sloping down and bending down.

Find a point whergy < 0 buty’ > 0 andy” > 0. The point is below the-axis but the
curve is slopindJP and bendindJP.

Solution ForZ < t < m (90° to 180°), y(t) = sint > 0 buty’(t) < 0 and
y"(t) <O.

Note that for2Z < ¢ < 27, y(t) < 0 buty’(t) > 0 andy”(t) > 0. The point is below
the x-axis but the bold sine curve is sloping upwards and bendingands.

(a) Solvey” + 100y = 0 starting fromy(0) = 1 andy’(0) = 10. (This is y,,.)
(b) Solvey” 4+ 100y = cos wt with y(0) = 0 andy’(0) = 0. (This can bey,.)
Solution (a) Substitute; = e¢*

y"” +100y =0
c2ect +100et =0
c? = —100
c==10¢

y = cellit 4 de—10it
This can be rewritten in terms of sines and cosineBlof Introducing the initial con-
ditions we have:
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y(t) = Acos(10t) + Bsin(10t)
y(0)=A=1
y'(0)=10B=10— B =1

y(t) = sin(10t) + cos(10t)
(b) As in equation (11) we assume the particular solution is

1
y(t) = m COS(wt)
Adding in the null solution and substituting in the initiareditions gives :

. 1
y(t) = Bsin(10t) + A cos(10t) + %007—‘”2 cos(wt)
y(0) = Bsni(O) + Acos(0) + 100 =2 cos(0) =0

A=
w? —100 w
/ _ _ . = .

y'(0) = 10B cos(0) — 10A sin(0) 100 =2 sin(0)

=10B=0—-B=0
Therefore the solution is:

y(t)

1
= m(cos(wt) — cos(10t))

17 Find a particular solutiory, = Rcos(wt — @) to y” + 100y = coswt — sinwt.
Solution

Right side: cos wt — sinwt = v/2 cos (wt +

N——

Diff. Eqn : —w?R cos(wt — ) + 100R cos(wt — a) = /2 cos (wt +

PR
N—

N——

(100 — w?)R cos(wt — a) = /2 cos (wt +

V2

™
ThenOé——Z andR—m

18 Simple harmonic motion also comes from a linear penduluke (i grandfather
clock). At timet, the height isA cos wt. What is the frequency if the pendulum
comes back to the start afteisecond ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a wedoradl havel’ = 1).

Solution The equation describing Simple Harmonic Motion is:

x(t) = Acos(wt — ¢)

If the period isT" = 1 second, the frequency j§ = 1 Hertz orw = 27 radians per
second.
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19 If the phase lag is, what is the time lag in graphings(wt — «) ?

Solution
«

cos(wt — a) = cos (w (t — ;))
Therefore the time lag is/w.
20 What is the responsgt) to a delayed impulse ifiy " + ky = §(t — T) ?
Solution Similar to equation (15) we have
sin(wy,(t = 1T))

MWy,

Yp(t) =
The conditions at tim& are:

1
/
yp(T) = 0 and y)(T) = —
Note thaty, starts from time = 7. We havey, = 0.
t
21 (Good challenge) Show that= [ g(t — s)f(s)ds hasmy” + ky = f(t).
t 0
1Whyisy' = [g'(t — s)f(s)ds+ g(0)f(t) ? Notice the twa’s in y.
0
Solution 1 The variablet appears twice in the formula for, so the derivatively /dt
hastwo terms (called the Leibniz rule). One term is the valuegdf — s) f(s) at the

upper limits = t; this is from the Fundamental Theorem of Calculus. Sihe¢so
appears in the quantity(t — s) f(s), its derivativeg’(t — s) f(s) also appears ip’.
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t
2Usingg(0) = 0, explain whyy” = [ ¢”(t — s)f(s)ds + ¢'(0) f(¢).
0 t
Solution 2 Sinceg(0) = 0, part 1 produced’ = [¢'(t — s)f(s)ds. Using the
0
Leibniz rule again (now op’), we get the two terms in”.
3 Now useg’(0) = 1/m andmg” + kg = 0 to confirmmy” + ky = f(t).
t t
Solution3 my”+ky = m (fg”(t —5)f(s)ds —i—g’(O)f(t))—i—k (fg(t - s)f(s)ds) =
0 0
m(1/m)f(t). The integrals cancelled becausge” + kg = 0.
22 With f = 1 (direct current has = 0) verify thatmy” + ky = 1 for thisy :
t

Step response y(t) :/
0

sinwy (t — s) 1 1
———— = 1lds =y, +yn equals—- — — coswpyt.
MW, k k

Solution This y(t) certainly solvesny” + ky = 1. Comment That formula for
y(t) fits with the usualf g(t — s)f(s)ds when f = 1 and the impulse response is
g(t) = (sinwy,t)/mw, in equation (15). And always thiep response should be the
integral of the impulse response The natural frequency is,, = k/m:

t

/ sin(wy, (t — 8)) s — cos(wn(t — )

£ 1 cos(wnt)

y(t) =

mwy, mw? 0o kK k

Notice that without damping resistance, the step respossélates forever—not
approaching the steady statg = 1/k.

23 (Recommended) For the equatidhy/dt*> = 0 find the null solution. Then for
d*g/dt* = 6(t) find the fundamental solution (start the null solution w4tf)) = 0
andg’(0) = 1). Fory” = f(t) find the particular solution using formula (16).

Solution 2y
o) =0 givesy, = A + Bt.

We get the fundamental solutigri(t) = ¢ for t > 0 by starting the null solution with
g(0) = 0andg’(0) = 1. Theng(t) = t andg(t — s) = t — s. This gives the particular
solution ford?y/dt? = f(t) using formula (16):

t
o) = [ =915 ds.
0
24 For the equation?y/dt?> = ™! find a particular solutiony = Y (w)e™*. ThenY (w)
is the frequency response. Note the “resonance” whea 0 with the null solution
UYn = 1.
Solution Substitutey = Yei«!:

_Y(w)w2eiwt — eiwt
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The null solution tay” = 0 is y(t), = At + B.

WhenA = 0 andB = 1, we gety,, = 1. This causes resonance.at= 0, the solution
formulay, = ¢! /w? breaks down.

25 Find a particular solutio’e™? to my” — ky = e™“*. The equation has-ky
instead ofty. What is the frequency responséw) ? For whichw is Y infinite ?

Solution Substitutey(t) = Yet in my” — ky = !
Then — Ymw2e™? — kY et = it
~Ymw?-Yk=1
1
Tkt me?
Y is infinite forw = 2\/% No resonance at real frequencigsbecause the equation
has—ky instead ofky.

Y(w)

Problem Set 2.2, page 87

1 Markthe numbers; = 2+ andss = 1—24 as points in the complex plane. (The plane
has a real axis and an imaginary axis.) Then mark the su#n s, and the difference
S1 — S2.

Solution The sumiss; + so = 3 — ¢. The difference is; — s, = 1 + 3i.

2 Multiply s; = 2 + i timesss = 1 — 2. Check absolute values$s||sa| = |s1 2.
Solution The product(2 + i)(1 — 2i) is 2 + i — 4i — 2i> = 4 — 3i. The absolute
values of2 + i and1 — 2i arev/22 + 12 = /5. The productt — 3i has absolute value
V42 4 32 = 5, agreeing with(v/5)(1/5).

3 Find the real and imaginary parts bf(2 + ). Multiply by (2 —4)/(2 —4):

1 2—1 2—1

244 2—i |2+i]2

Solution 1 2—1 2—4 1 z
, - = Ingeneral— = —
2440 2—i 5 z  |z]?
4 Triple angles  Multiply equation (2.10) by another® = cos 6 + isin 6 to find
formulas forcos 36 andsin 36.

because:z = |z|*.

Solution Equation (10) icos @ + isin)? = cos 20 + i sin 26. Multiply by another
cosf + isinf:

(cosf +isinf)® = cosf cos 26 + i sin f cos 20 + i cos O sin 20 — sin 0 sin 260
= cos( + 26) + isin(6 + 26) by sum formulas
= cos 360 + isin 36

Real part cos 30 = cos® 6 — 3 cos#sin? § Imaginary part sin30 = 3 cos? §sin 6 —
sin’.
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Addition formulas  Multiply €% = cos 6+ sin 6 timese’® = cos ¢+isin ¢ to get
e0F9)  Its real part is:os (6 4 ¢) = cos 6 cos ¢ — sin 0 sin ¢. What is its imaginary
partsin (6 + ¢) ?

Solution The imaginary part ofcos 6 + i sin 8)(cos ¢ + i sin ¢) is the coeffieient of :
sin 6 cos ¢ + cos 0 sin ¢ must equain(6 + ¢).

Find the real part and the imaginary part of each cube robt 8how directly that the
three roots add to zero, as equation (2.11) predicts.

Solution The cube roots of are at angle$, 27/3,47/3 (or 0°,120°,240°). They
are equally spaced on the unit circle (absolute vajud he three roots areand

2mi/3 _ 05 2T 4 jsin 2T — 1 4 V3
e =cos 3 +isin 5 = 2—{—?,2
ari)3 _ dr | soodm 1 :A/3
€ —cos3+zsm—3— 2 15

The suml — % + z@ — % — z@ equalszero. Always : n roots of2” = 1 add to zero.

The three cube roots df arez andz2? and1, whenz = ¢27¥/3, What are the three
cube roots o and the three cube roots of (The angle for is 90° or 7/2, so
the angle for one of its cube roots willbe . The roots are spaced bg0°.)

Solution The three cube roots & are2 and2e™/3 = —1 4 /3i and2¢™/3 =
—1 — +/3i. (They also add to zero.)

The three cube roots 6f= ™/ aree™/6 ande®%/6 ande”™*/¢ still add to zero.

(@) The numberi is equal toe™/2. Then its ith power 3 comes out equal to
a real number, using the fact th@at )’ = e*t. What is that real numbef ?

(b) ¢™/2 is also equal toe®™/2.  Increasing the angle byr does not
changee’® — it comes around a full circle and back to Theni’ has another real
value(e®™/2)" = ¢=57/2, What are all the possible valuesib®?

Solution (a) Theit" power ofi = e™/2 is i = (e™/2) = ¢~™/2 by the ordinary rule
for exponents. Surprising thétis a real number.

(b) i also equals®™/? sinceZZ is a full rotation from%. So’ also equalge®™/2)¢ =
e~57/2—and infinitely many other possibilities ?7+1)7/2 for every whole number
n. We are on a “Riemann surface” with an infinity of layers.

The numberss = 3 + ¢ ands = 3 — i are complex conjugates. Find their sum
s +3 = —B and their products)(s) = C. Then show that? + Bs + C = 0
and als®? + Bs + C = 0. Those numbers ands are the two roots of the quadratic
equationz? + Bx + C = 0.

Solution —B=s+5=3+4)+(B3—1)=6. C=(s)(5) =(3+1)(3—14) = 10.
Thens ands are the two roots 0f? — Bx + C = 22 — 6z + 10 = 0. The usual
quadratic formula give§Ev35—10 — 6£2i _ 34

The numbers = a + iw ands = a — iw are complex conjugates. Find their sum

s+3% = —B and their products)(s) = C. Then show that? + Bs + C = 0. The two
solutions ofz? + Bz + C' = 0 ares ands.

Solution —B = (a +iw) + (a —iw) = 2a C = (a +iw)(a — iw) = a® + iw?.

Then the roots 0f? — 2az + a® + w? = 0 arex = 22549 — g 4y,
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11 (a) Find the numberél + 4)* and(1 + i)8.
(b) Find the polar formre® of (14 iv/3)/(v3 + ).
Solution (@) (1 +4)* = (V2e'™")* = (1/2)%e'™ = —4
(1+1)® = square of(1 +i)* = (square of-4) = 16.
(b) (14 iv3)(v/3 +1i) = V3 + 3i + i — /3 = 44. Dividing by (2)(2) = 4 this is
(cos f 4 isin @) (sin 6 + i cos §) = i(cos® O + sin? 0) = 3.
The unexpected part issin  + i cos 6 = cos(Z — §) + isin(% — 0) = e*("/2=9),
Then the product of”? ande’("/2-%) is ¢"/2 which equalsg as above.

12 The number: = €27/" solvesz™ = 1. The numbeZ = ¢>7/?" solvesZ?" = 1.
How is z related toZ ? (This plays a big part in the Fast Fourier Transform.)

Solution If Z = €*™/2" thenZ? = ¢*™/™ = 2. The square of thén th root is the
n th root. The angle foZ is half the angle foe.

The Fast Fourier Transform connects the transform at Bvéd the transform at level
n (and on down to:/2 andn /4 and eventually td, if these numbers are powers2jf

13 (a) If you knowe? ande=%, how can you findin 0 ?
(b) Find all angle® with e’ = —1, and all angles with e** = 1.
Solution (a)sinf = ;[(cosf +isinf) — (cosf — isinf)] = %(ew — e %9).
(b) The angles witk?® = —1 aref = = + (any multiple of 27) = (2n + 1)m.
The angles withke’® = 1 are¢p = any multiple of 27 = 2n.

14 Locate all these points on one complex plane:

@2+i (b) (2+i) (c)%ﬂ d) 2+

Solution 2 + i is in quadrantl. (2 + 4)? is in quadran®. 5L is in quadrant.

241
|2 +i| = /5 is on the positive real axis.

15 Find the absolute values= |z| of these four numbers. #fis the angle fo6 + 8:, what
are the angles for these four numbers?

@6-8  (b) (6-8) (c) ﬁ (d) 8i+6

Solution The absolute values ai® and100 and {5 and10.
The angles arér — 6 (or just—0), 27 — 20 (or just—26), 6, andé.
16 What are the real and imaginary parts6f" i™ ande® + iw 2
Solution 4™ = e%ei™ = —e~%(real) et = e cosw + ie sinw
17 (a) If |s| = 2 and|z| = 3, what are the absolute valuessafands/z ?
(b) Find upper and lower boundsin< |s + z| < U. When does$s + z| = U ?
Solution (a)|sz| = |s| |[z| =6 Is/z] =1|s|/|z] = 2/3.
(b) The bestbounds afe=1andU =5:1 < |s+ z| <5.
That bounds is reached wher andz have thesame angle.
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(a) Where is the produgtin 6 + i cos 6)(cos 8 + i sin 8) in the complex plane ?
(b) Find the absolute valyé| and the polar anglé for S = sin 6 + ¢ cos 6.

This is my favorite problem, becausg combinescos § andsin 6 in a new way.
To find ¢, you could plotS or add angles in the multiplication of patt)(

Solution (sin #+i cos 0)(cos O-+i sin §) = sin @ cos f-+i(sin? f+cos? f) —cos f sin § =
1. The product is imaginary. The angles must adé6.
Sincecosf + isind is at angled and the product is at anglerr/2, the first factor

sin# + i cos @ must bee’® at anglep = 3 — 6. The absolute value i$. See also
Problem 2.2.11.

Draw the spirale:(1 =9 ande(2 — 20t Do those follow the same curves? Do they
go clockwise or anticlockwise ? When the first one reachendgativer-axis, what is
the timeT' ? What point has the second one reached at that time ?

Solution The spirale(!=9* = ¢te~ starts atl whent = 0. As t increases, it goes
outward (absolute valug) and clockwise (the angle ist). It reaches the negativé
axis whent = 7. The second spiral>~29? is the same curvebut traveled twice as
fast. Its angle-2¢ reaches-r (the X -axis) at timet = 7 /2.

The solution tad?y/dt? = —y is y = cos t if the initial conditions arey(0) =
andy’(0) = . The solution isy = sin ¢t wheny(0) = andy’(0) =

. Write each of those solutions in the forene™ + ¢y e~ %, to see that real
solutions can come from complex andc,.

Solution y = cost hasy(0) = 1 andy’(0) = 0. y = sint hasy(0) = 0 and
y'(0) = 1. Those solutions ar@st = (e + e~%)/2 andsint = (e — e~ /2i.

The complete solution tg” = —yisy = Cycost + Cysint. The same complete
solution is Cy(e® + e7)/2 + Co(e® — e7)/2i = cre® + coe” with
c1 = (Cl + 02)/2 and02 = (Cl — CQ)/2Z

Supposey(t) = e~ teit solvesy” + By + Cy = 0. What areB andC'? If this
equation is solved by = 3 what areB andC ?

Solution If y = ¢ solvesy” + By’ 4+ Cy = 0 then substituting:* shows that

s? + Bs + C = 0. This problem has = —1 + i. Then the other root is the conjugate
s = —1 — i (always assuming@ andC are real numbers). The supR is —B. The

product(s)(3) = 2is C. So the underlying equationig’ + 2y’ + 2y = 0.
From the multiplicatione’? ¢=B = ¢i(A—B) find the “subtraction formulas”
for cos (A — B) andsin (A — B).
Solution Start with the fact that*4e—*F = ¢(A~B)_ Use Euler’s formula:
(cos A + isin A)(cos B — isin B) = cos(A — B) + isin(A — B).
Compare real partsos A cos B + sin Asin B = cos(A — B).
Compare imaginary partsin A cos B — cos Asin B = sin(A — B).

(a) If r andR are the absolute values #and.S, show that-R is the absolute value of
sS. (Hint: Polar form?)

(b) If 5 and S are the complex conjugates efand S, show thatsS is the complex
conjugate okS. (Polar form!)
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Solution (a) Given: s = re® and S = Re'® for some angle® and ¢. Then
s8 = rRe*®+%)  The absolute value o0fS is rR = (absolute value ofs)
(absolute value of).

(b) Nows = re~ andS = Re**. Multiply to getsS = rRe"*+%), This is the
complex conjugate ofS = rRe*?*+%) in part (a).
Suppose a complex numbersolves a real equatios® + As> + Bs + C = 0

(with A, B, C real). Why does the complex conjugatealso solve this equation ?
“Complex solutions to real equations come in conjugate paénsd 5.

Solution The complex conjugate 6f + As2+ Bs+C = 0is5° + A5+ B5+C = 0.
We took the conjugate of every term using the fact thaB, C are real. (The conju-
gates ofs? ands® ares? ands® by Problem 23).

For quadratic equations® + Bz + C' = 0, the formula(—B + B2 —4C)/2 is
producingcomplex conjugates fromd- whenB? — 4C is negative.

(a) If two complex numbers add to+ S = 6 and multiply tosS = 10, what ares and
S ? (They are complex conjugates.)

(b) If two numbers add ta + S = 6 and multiply tosS = —16, what ares and
S ? (Now they are real.)

Solution (a) s andS must have the same real partThey each have magnitudél0.
SosandS are3 + i and3 — i.

(b) If s+ S = 6andsS = —16 thens andS are the roots of? — 6z — 16 = 0. Factor
into (z — 8)(x + 2) = 0 to see that andS are8 and—2. (Not complex conjugates! In
this exampleB? — 4AC = 36 + 64 = 100 and the quadratic has real ro8tand—2.)

If two numberss andS add tos + S = —B and multiply tosS = C, show thats and
S solve the quadratic equatiaf + Bs + C = 0.

Solution Just check thatz — s)(x — S) = 22 + Bz + C. The left side is
2? — (s + S)z + sS. Thens + S agrees with- B andsS matche<'.

Find three solutions te®> = —8i and plot the three points in the complex plane. What
is the sum of the three solutions ?

Solution The three solutions have the same absolute valuEheir angles are sepa-
rated byl120° = 27/3 radians = 47 /6 radians. The firstangle 5= —30° = —7 /6
radians (so tha3f = —90° = —n/2 radians matchesz).

The answers ar@e~™%/6, 2¢37%/6_2¢77i/6 They add t.

(@) For which complex numbers = a + iw doese®® approach) ast — oo?
Those numbers fill which “half—plane” in the complex plane ?

(b) For which complex numbers = a + iw doess™ approach0 asn — oco?
Those numbers fill which part of the complex plane ? Not a half-plane!

Solution (a) If s = a + iw, the absolute value ef’ is e**. This approache8if a is
negative The numbers = a + iw with negativeu fill the left half-plane.

(b) This part asks about the powes's instead ofe*t. Powers ofs approach zero if
|s| < 1. This is the same as? + w? < 1. These complex numbers fill thieside of
the unit circle.
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Problem Set 2.3, page 101

1 Substitutey = e°* and solve the characteristic equation for
@2y" +8y"+6y=0  (b)y" —2y" +y=0.

Solution (a) 2s* + 8s + 6 factors into2(s + 3)(s + 1) so the roots are = —3 and
s = —1. The null solutions arg = e 3! andy = e~* (and any combination).

(b) s* — 252 + 1 factors into(s? — 1) which is (s — 1)2(s + 1)2. The roots are
s = 1,1,—1,—1. The null solutions arg = cie! + cote! + c3e™t + cyte™t. (The
factort enters for double roots.)

2 Substitutey = e and solve the characteristic equation for a + iw :
@y"+2y"+5y=0  (b)y"" +2y" +y=0
Solution (a) s? + 2s +5 = 0 givess = (—2+ /4 —-20)/2 = —1 4+ 2i = a + iw.
Theny = e~ cos 2t andy = e~ ! sin 2¢ solve the (null) equation.

(b) s* + 25> + 1 = 0 factors into(s® + 1)(s*> + 1) = 0. The roots are, i, —i, —i.
The solutions arg = cie? + cote + cze™ + cyte™ . They can also be written as
y = Cypcost+ Cytcost + Cssint + Cytsint.

3 Which second order equation is solvedipy: cie™ 2! + coe™* ? Ory = tedt ?
Solution If s = —2 ands = 4 are the exponents, the characteristic equation must be
s? 4+ 6s + 8 = 0 coming fromy " + 6y’ + 8y = 0.

If y = ted is a solution, therd is adouble root. The characteristic equation must be
(s —5)? = 5% — 10s + 25 = 0 coming fromy” — 10y’ + 25y = 0.

4 Which second order equation has solutigns c;e 2 cos 3t + coe 2! sin 3t ?
Solution Those sine/cosine solutions combine to givé’e® ande=2'e~3¥. Then
s = —2 = 3i. The sum is—4 and4, the product i£2 + 32 = 13.

The equation must bgy”’ — 4y’ 4+ 13y = 0.

5 Which numbers3 give (under) (critical) (over) damping ity” + By’ + 16y =07

Solution The roots of4s?> + Bs + 16 ares = (—B + v/ B2 — 162)/2. We have
underdamping foB? > 162 (real roots); critical damping faB? = 162 (double root);
overdamping fo3? < 162 (complex roots).

6 If you want oscillation frommy” + by’ + ky = 0, thenb must stay below .
Solution Oscillations mean underdamping. We nééd< 4km.
Problems 7-16 are about the equatioms? + Bs 4+ C = 0 and the rootss, ss.
7 The rootss; ands, satisfys; + s2 = —2p = —B/2A ands;s2 = w? = C/A. Show
this two ways:
(a) Start fromAs? + Bs + C = A(s — s1)(s — s2). Multiply to sees; s, ands; + s».
(b) Start froms; = —p + iwg, 2 = —p — iwy

Solution (a) MatchAs? 4+ Bs+Ct0 A(s—s1)(s—s2) = As? — A(s1+s2)s+ Asisa.
Then—B = A(s; + s2) andC' = Asysq. Error in problem : s; + s2 equals—B/A
and not—B/2A.

(b) s1 4+ s2 = (—p + iwq) + (—p —iwq) = —2p = —B/A. Thenp = B/2A.
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Find s andy at the bottom point of the graph gf= As? + Bs + C. At that minimum
points = smin @andy = ymin, the slope isly/ds = 0.

Solution The minimum ofAs? + Bs + C is located by derivative- 24s + B = 0.
Thens = —B/2A (which isp). The value ofAs? + Bs + (' at that minimum point is
A(B?/4A%) — (B?/2A) + C = —(B%/4A) + C = (4AC — B?)/4A.

Notice: If B? < 4AC the minimum is> 0. ThenAs? + Bs + C # 0 for reals.

The parabolas in Figure 2.10 show how the graply 6t As? + Bs + C is raised
by increasingB. Using Problem 8, show that the bottom point of the graph radef
(change insmin) and down (change ipmin) whenB is increased b\ B.

Solution For the graph of = As?+ Bs+C, the bottom pointig = (4AC—B?)/4A
ats = —B/2A. WhenB is increaseds moves left and moves down. (The convention
isA>0.)

(recommended) Draw a picture to show the paths,ainds, whens? + Bs +1 =0
and the damping increases frath= 0 to B = oo. At B = 0, the roots are on the

axis. As B increases, the roots travel on a circle (why?). BAt= 2, the
roots meet on the real axis. F& > 2 the roots separate to approattand —oco.
Why is their producs; s, always equal td ?

Solution The roots ofs? + Bs + 1 will move asB increases from to co. At B = 0,
the roots ofs? + 1 = 0 areimaginary: s = +i. As B increases, the roots are complex
conjugates always multiplying te; s, = 1. They are on theunit circle. When B
reacheg, the roots ofs? + 2s + 1 = (s + 1)? meet ats = —1. (Each root traveled a
quarter-circle, fromti to —1.) For largerB and overdamping? > 4AC = 4(1)(1),
the rootss; s, arereal. One root moves from-1 towards = 0, the other moves from
—1 toward—oo. At all times s1s0 = C/A = 1/1.

(this too if possible) Draw the paths of ands; whens? +2s+ k = 0 and the stiffness

increases fromk = 0 to k = oo. Whenk = 0, the roots are .
At k = 1, the roots meet at = . Fork — oo the two roots travel up/down
ona in the complex plané/hy is their suns; + s, always equal to- 2?

Solution This problem changésin s2 + 2s + k = 0. So thesum s; + s; stays at-2,
theproduct s;s2 = k/1 increases frond to co.

Whenk = 0, the roots—2 and0 arereal. Whenk = 1, the roots are-1 and —1
(repeated. Whenk — oo, thenB? — 4AC = 4 — 4k is negative and the roots
s = —1 %+ qw arecomplex conjugates They lie on the vertical ling = Res = —1
in the complex plane.
If a polynomial P(s) has a double root at= s1, then(s — s1) is a double factor and
P(s) = (s — 51)?Q(s). CertainlyP = 0 ats = s;. Show that alsalP/ds = 0
ats = s;. Use the product rule to findP/ds.
Solution P = (s — s1)?Q(s) has a double roat = sy, together with the roots of
Q(s). The derivative is

dpP d .

== (s — 81)2d_Q +2(s —$1)Q(s). Thisis zero ats = s;.

S S

Show thaty” = 2ay’ — (a® + w?)y leads tos = a + iw. Solvey” — 2y’ + 10y = 0.
Solution Substitutey = e*¢ in the differential equation. Cancel’ from every term to
leaves? = 2as — (a2 + w?).
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The roots are + iw, their sum i2a, their product is:? + w?.

Fory” — 2y’ + 10y = 0 (negative damping!) the sum is + s, = 2 and the product
is 10. The roots areg = 1 % 3i. The solutiony(t) is c; e 39t 4 ¢pe(1=30)¢,

The undampedatural frequencys w,, = /k/m. The two roots ofns? + k = 0 are
s = +iw, (pure imaginary). Withp = b/2m, the roots ofms? + bs + k = 0 are
81,82 = —p £ \/p? — w2. The coefficienp = b/2m has the units of /time.
Solves? +0.1s + 1 = 0 ands? + 10s + 1 = 0 with numbers correct to two decimals.
Solution s? +0.1s+1 = 0 givess = (—0.14++/0.01 — 4)/2 = (—0.1 £4+/3.99)/2.
How to approximate that square root?

The square root of —  is close to2 — 2z. Computing(2 — 1z)? =4 — z + 2?/16
we see the small errar®/16. Our problem hagd — z = 3.99 andz = 1/100. So the
square root is close »— 5. The roots ares ~ (—0.1+1i (2 — 555)) /2. In other
wordss = —0.05 + (1 — 0.00125).

Fors®+10s+1 =0, the roots arg = (—104 /(100 — 4)/2 = -5+ /25 — 1. The
square root o5 — z is close to5 — %x, because squaring the approximation gives
25 — x + (%/100). Our example has = 1 ands ~ —5 + (5 — &), which gives the
two approximate roots = —% and—10 + %.

These add te-10 (correct) and multiply to99 (almost correct).

With large overdampingp >> w,, the square root\/p? —w?2 is close to
p — w?2/2p. Show that the roots ofns? + bs + k ares; ~ —w?2/2p = (small)
ands, =~ —2p = —b/m (large).

Solution Use that approximate square rgot w2 /2p in the quadratic formula:

w? w? w?
s=-pt/p?—wlm-pt (p—z—;>. Thens:—2—; and —2p+ 2—;

Whenp is large andv,, is small, a small root is nearw? /2p and a large root is near
—2p. (Their product is the correct?, their sum is close to the corree®p.)

With small underdamping << w,, the square root 0p? — w? is approximately
iwn — ip?/2w,. Square that to come close 6 — w?. Then the frequency for small
underdamping is reduced &g, ~ w,, — p?/2w,,.

Solution Now p is muchsmaller thanw,,. So the rootss = —p + /p? — w2 are
complex. The damped frequengy = /w2 — p? is close tow,, and the correction
term is—p? /2w,, from the approximatiow,, — p?/2w,, to the square root. (Square that
approximation to see? — p? + (p*/4w2).

Here8is arsth order equation with eight choices for solutions- e :

d . A
—g =y becomes s8¢t = ¢! and s® =1 : Eightroots in Figure 2.6.

Fin %WO solutionse®® that don't oscillate £ is real). Find two solutions that only
oscillate ¢ is imaginary). Find two that spiral in to zero and two tharapout.

Solution The equatior® = 1 hasS8 roots. Two of them are = 1 ands = —1 (real:
no oscillation). Two are& = ¢ ands = —i (imaginary : pure oscillation). Two are
s = e?™/® ands = e~2"*/® (positive real partsos T : (oscillating growth, spiral out).
Two ares = ¢3™/* ands = e 37/ (negative real parts : oscillating decay, spiral in).
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d™y
At

Then roots sy, ..., s, producen solutionsy(t) = et (if those roots are distinct).
Write downn equations for the constants to ¢, in y = cie®tt + --- + ¢, et by
matching the initial conditions fory(0), y/(0), . .., D"~ 1y(0).

18 A, +...+Al%+A0y:0|eadst0Ans”+---+A18+Ao=0-

Solution Then roots given solutionsy = e (when the roots are all different).
There aren constants iry = cie®'t + --- + c,e*»t. These constants are found by
matching thex initial conditionsy(0),4’(0), . . . Take derivatives ofy and sett = 0
c1+ca+- 4 =y(0)
181+ a8y 4 -+ cpsy =y'(0)
crsi + cas3 + -+ + casyy, = y"(0)

Then by n matrix A in those equations is the transpose dadermonde matrix :

1 1 --- 1
S1 S9 e Sn
A= 2 .2 2

81 82 S

19 Find two solutions to d2°1%y /dt?°15 = dy /dt. Describe all solutions te?°!® =s.

Solution With y = et we find s2915 = 5. One solution has = 1 andy = ¢'. The
other2014 solutions haves?°14 = 1 (s = 1 is double! Second solutiop = tet.)
The 2014 values ofs are equally spaced around the unit circle, separated byntijle a
27 /2014.

20 The solution toy” = 1 starting fromy(0) = y’(0) = 0is y(t) = t2/2. The
fundamental solution tg” = §(¢) is g(t) = t by Example 5. Does the integral
Jg(t—s)f(s)ds = [(t — s)ds from 0 to ¢ give the correct solutiop = ¢*/2?

Solution The main formula for a particular solution is correct :
(t—s)21" 2

wlt) = [ ot =55 ds = [(e=s)as =~ 5 -z
0 0 5=

21 The solution toy” + y = 1 starting fromy(0) = y’(0) = 0isy = 1 — cost. The
solution tog” + g = 6(¢) is g(t) = sint by equation (13) withv = 1 andA4 = 1.
Show thatl — cos ¢ agrees with the integrgl g(t — s) f(s)ds = [ sin(t — s)ds.

Solution The formula for a particular solution is again correct:
t t

yp(t) = /g(t— s)f(s)ds = /sin(t —5)ds = cos (t — s)|'_, = 1 — cost.
0 0
Theny, + y, = 1.
22 The step functiorf{ (¢t) = 1 for t > 0 is the integral of the delta functioi®o the step

responser(t) is the integral of the impulse responseThis fact must also come from
our basic solution formula:



2.4. Forced Oscillations and Exponential Response 55

¢
Ar"” + Br' +Cr =1 with 7(0) =7'(0) =0 has r(t) = /g(t —38)1lds
0

t
Change — s to  and changés to —dr to confirm that-(t) = [ g(7)dr.
0

Section 2.5 will find two good formulas for the step respor(ge.

Solution For any equatiotdr” + Br’ + Cr = 1 with f(t) = 1, y, comes from the
integral formula:

¢ ¢
Yp :/g(t—s)f(s)ds: /g(t—s) ds. Changetot—s=r7 and —ds = dr and
0 0

t
—/Q(T)dT: +/g(7-)d7- = step response
0

t

Problem Set 2.4, page 114
Problems 1-4 use the exponential respongg, = eCt/P(c) to solve P(D)y = e°t.

1 Solve these constant coefficient equations with exporleiriiang force :

@y, +3y, +5y, =€ (0)2y) +4y, =€  ()y" =¢

Solution (a) Substitutey = Ye! to findY :

Ye! +3Ye! +5Ye! =¢' gives9Y =1 andY =1/9 :y =¢'/9

(b) Substitutey = Ye® : 2i2Yet +4Yet =t :2Y =1 1y = €'/2

(c) Substitutey = Yef tofindY = 1 andy = €.
2 These equationB(D)y = e use the symbab for d/dt. Solve fory,(t):

(@) (D? + 1)y, (t) = 103" (b) (D? + 2D + 1)y, (t) = e™*

(©) (D* + D? + 1)y, (t) = e

Solution (a) Substitute) = Ye 3 to find9Y +Y =10 : Y =1 andy = e3¢

(b) Substitutey = Ye™* to find ((iw)? + 2iw + 1)Y = 1 andY = 1/(1 — w? + 2iw).

(c) Substitutey = Ye'? to find ((iw)* + (iw)?+1)Y = LandY = 1/(1 —w? +w?).
3 How couldy, = e°*/P(c) solvey” + y = e’e’ and thery” + y = e’ cost ?

Solution First,y”+y = e(+)t hasc = 1+iandy = Ve = e 0! /((1+i)2+1) =
ete’ /(1 + 2i). Thereal part of thaty solves the equation driven ¥ cos:
1—-2:

=Re|e'(cost +isint) | 5——
Y e'(cos +zsm)<12+22

1
ﬂ = get(cost—l- 2sint).
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4 (a) What are the roots, to s3 and the null solutions tg;)” — y,, =0 ?

(b) Find particular solutions tg)" — y, = e’ and toy;" — y, = e' — e’’’

Solution (a)y = e*! leads tos® — 1 = 0. The three roots = 1, s = ¢>™/3 = —1 4
1V3,s = e /3 = —1_1/3 give three null solutiong,, = e, e~*/2 cos \/7§t, e /2 sin @t.
(b) The particular solution withf = e isy, = e /(i3 — 1).
The particular solution withf = e — e looks likey = ! /(1% —1) — e ((iw)3 —1).
But the first part ha$® — 1 = 0 and resonance : thefi/(1% — 1) changes by equation
(19) tote'/3: (The differential equation hag” — y = (D3 — 1)y = P(D)y and is
P'(D) =3D?andP’(c) = 3 because’ hasc = 1.)
Problems 5-6 involve repeated roots in y,, and resonanceP(c) = 0 in y,.

5 Which value ofC' gives resonance in” +Cy = e™“* ? Why do we never get resonance
in yl/ + 5y/ + Cy — ezwt ?
Solution y”+Cy = ™' has resonance wheft’* solves the null equation, géw)?-+
C = 0andC = w?. For thisC the particular solution must change fragn= ¢**/0
toy, = te'*t/2iw (because the derivative &t(D) = D? + Cis P/(D) = 2D and
thenP’(iw) = 2iw).
We never get resonance with D) = D?+ 5D+ C because’(iw) = (iw)?+ 5iw+C
is never zero angd = ¢! is never a null solution.

6 Suppose the third order equati®iD)y,, = 0 has solutiong = c;e! + c2e?! + cze’.
What are the null solutions to the sixth order equaityD)P(D)y,, = 0 ?
Solution The three roots ofP(s) must bes = 1,2,3. The sixth order equation
P(D)P(D)y = 0 has those adouble rootsof P(s)?. So the null solutions are

Yy = clet + cztet + 6382t + C4t€2t + C5€3t + 06te3t

7 Complete this table with equations fer ands, andy,, andy, :

Undamped free  my"” +ky =0 Yn = c1ent 4 cpe~iwnt
Undamped forced my” + ky = ¢! yp = €t /m(w2 — w?)
Damped free my” +by' +ky=0 y, = cre®1t 4 cye®?t

Damped forced  my” + by’ + ky = e y, = et/(mc? + bc + k)
Heres; andss are—b/2m + /b2 — 4mk/2m.
8 Complete the same table when the coefficients aed2Zw,, andw? with Z < 1.

Undamped free y" +wiy=0 Yn = crei@nt 4 cpe—iwnt

Undamped forced  y” + w2y = e'! Yp = et /m(w2 — w?)
Underdamped free  y” +2Zw,y’ + w2y =0 1y, = c1e% + cpe2?
Underdamped forced y” + 2Zw,y’ + w2y = e y, = et /(c? + 2Zwnc + w?)
Those use equations (20) in 2.3 and (32-33) in 2.4.

9 What equationg” + By’ + Cy = f have these solutions ? Hint: FirglandC from
the exponentsin y,, : s + s = —B ands;s; = C. Find f by substitutingy,.

(@)y = c1 cos2t + casin2t + cos3t y”’ + 4y = —5cos 3t
(b)y = cre t cosdt+coe tsindt+cos5t y!’! + 2y’ + 17y = —8 cos 5t — 10 sin 5t
©y=ciet+eate P +et y” + 2y’ +y = [(iw)? + 2iw + 1]e™?.
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10 If y, = te S cosTt solves a second order equatioty” + By’ + Cy = f,

11

12

13

what does that tell you about, B, C, andf ?

Solution This particulary, is showingresonancefrom the factort. (If this wasys,,
we would be seeing a double root 482 + Bs + C = 0.) The rootiss = —6 + 7i
from the other factors af,,.

So | believe that
As’+ Bs+C = A(s+6 —T7i)(s+ 6 + 7i) = A(s* + 12s + 36 + 49)
f=Fe 5 (AcosTt+ BsinTt)
(a) Find the steady oscillatioy),(¢) that solves)” + 4y’ + 3y = 5 coswt.
(b) Find the amplitudel of y,(¢) and its phase lag.
(c) Which frequencw gives maximum amplitude (maximum gain) ?

Solution (a)y, hassinwt as well ag:os wt. Use equations (22-23) fg, = M cos wt+
N sinwt :

D=(3-w?)?+16w? M=

(b) From equation (26) and the page 112 table:

Amplitude= G = —1> and the angle: has tangent {f = %

¢) The maximum gai: and the minimum oD = (3 — w?)2 + 16w? will occur when
(c) g

dD
- = —4w(B-w?)+32w=0 and 3 —w? =8 and w = +/5.
w
This “practical resonance frequency” is computed at thedrs@éction 2.5.
Solvey” + y = sinwt starting fromy(0) = 0 andy’(0) = 0. Find the limit ofy(¢) as
w approaches, and the problem approaches resonance.
Solution The solution isy = y, + yp, = c1cost + casint + Y sinwt. Substituting
into the equation gives w?Y sinwt + Y sinwt = sinwt andy” = —

1—w?"

y(0) = 0 givesc; = 0. Andy’(0) = ca + wY = 0 givescy = —wY :

—w 1 . sinwt — wsint
y(t)_l—w251Ht+1—w251HWt_ o2
Asw goes tal, this goes td) /0. Then the I'Hopital Rule finds the ratio af-derivatives
atw =1:
tcoswt —sint tcost — sint
- _> -
—2w -2
Does critical damping and a double reot= 1 iny” 4 2y’ + y = e° produce an extra
factort in the null solutiony,, or in the particulaw, (proportional toe“*) ? What isy,,
with constants;, co ? Whatisy, = Ve ?

= Resonant solution

Solution Critical damping is shown in the double root= —1, —1ins? +2s+1 =0
and in thenull solutions y,, = cie™t + cote™t. (Resonance would come wheris
also—1 in the right hand side.) The solutigp = Ye hasy” + 2y’ +y = ¢ and
(Y +2c¢Y +Y)=1andY =1/(c? +2c+1).
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If ¢ = iw in Problem13, the solutiony, toy” + 2y’ +y = et is . That fraction
Y is the transfer function ats. What are the magnitude and phas&’in= Ge = ?
Solution Setc = iw in the solution to Problem 13: o

Yp —|— Ve = et/ (iw? + 2w + 1) = Ge™ et
ThenG = 1/(1 — w? + 2iw) has magnitudéG| = 1//(1 — w?)2 + 4w? = 1/V/D.

The phase angle hasna = 2.

By rescaling both ¢ and y, we can reachA=C =1. Then w, =1 and
B = 2Z. The model problemisy” + 2Zy’ + y = f(t).

What are the roots of? + 2Zs + 1 = 0? Find two roots forZ = 0,
and identify each type of damping. The natural frequencyisa,, = 1.

Solution The roots are = —Z ++/Z2 — 1. (All factors 2 will cancel.)

1
11,2

Z =0:s8=d=i No damping

Z =3 :s=(-1%+/3i)/2 Underdamping
Z=1:s=-1,-1 Critical damping
Z=2:5=-2+3 Overdamping

Find two solutions toy” + 27y’ + y = 0 for everyZ exceptZ = 1 and—1. Which
solutiong(t) starts fromg(0) = 0 andg’(0) = 1? What is different about = 1?

Solution If Z2 # 1 the solutions arg = ce®1! + cpe®2t. Theimpulse responsey(t)

on page 97 comes from= —Z +r:
eslt _ 8ot

g(t) = S — e~ Zt(emt — ety /2r with r = \/Z2 — 1 in formula (2.3.12)

51 — 52
If Z = 1 (critical) thens; = s andr = 0 andg(t) changes tde~* (formula 2.3.15).
The equationmy” + ky = cosw,t is exactly at resonance. The driving frequency
on the right side equals the natural frequengy = +/k/m on the left side.

Substitutey = Rtsin(y/k/mt) to find R. This resonant solution grows in time be-
cause of the factar.

Solution y’ = Rsin\/£t+Ry/Etcos\/Ltandy” = 2R /£ cos/Et—REtsin /L,
Thenmy”+ky = 2RVkm cos / £t—Rktsin \/ Et+kRt sin /£t = 2RVEm cos y/ £¢.

This agrees withos w,t on the right side of the differential equatior® = 1/2vVkm.
Comparing the equationsy” + By’ +Cy = f(t) anddAz" + Bz’ +(C/4)z = f(t),
what is the difference in their solutions ?

Correction The forcing term in the-equation should bf(i)
Solution z(t) will be 4y(%). Thenz’ = /() andz" = 15" ().

4Az" + Bz' + £z equals term by term tly (1) + By/(%) + Cy(%) = f(L).
Find the fundamental solution to the equatidh— 3¢’ + 2g = §(¢).

Solution The roots ofs2 — 3s +2 = 0 ares = 2 ands = 1 : Real roots. Use formula
2.3.12 on page 97 to fing(¢) :
eslt _ eszt o .

g(t):mze —e'.

Notice thatg(0) = 0 andg’(0) = 1 (andA = 1 in the differential equation).
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20 (Challenge problem) Find the solutiong6+ By '+y = cos t that starts frony(0) = 0

21

andy’(0) = 0. Then let the damping constaBtapproach zero, to reach the resonant
equationy” + y = cos t in Problem 17, withn = k = 1.

Show that your solutiog(¢) is approaching the resonant solutigmsin t.

Solution The particular solution ig, = Stt. Theny” + y, = 0 and By, = cost.
Theroots ofs? + Bs +1 =0 ares = (—B+ VB2 —4)/2 = (—B +iV4 — B2)/2.

Theny = cre®t! + cpe®' + Lsint. Att = 0 we must haver; + ¢, = 0 and
s1c1 + Saco + % = 0. Putea = —¢y tofind (s1 — s2)c; = iv4d — B%2¢y = —1/B.
) 1
SolutionnearB =0 y = —————(e! — e2') + —sint.

N BQ( )+ 5
At B = 0 the roots arg; =i andsy = —%, andv/4 — B2 = 2.
The solutiony(t) approacheg = 552isint + & sint = § (sign of resonance).
I'Hopital asks for the ratio of thé-derivatives. Certainly3 in the denominator haB-
derivative equal td. Andv/4 — B? approache8. So we want theéB-derivative of the
numerator, where s;,so depend onB. Then asB — 0,y approaches

(e ) = 4 [enttly —ntd] Ly (<) o't (—1) ¢ = Ltsing. Wow

Suppose you know three solutions, 2, y3 to y” + B(t)y' + C(t)y = f(t).
(Recommended) How could you firél(t) andC(¢) and f (¢) ?

Solution The differences = y; — y2 andv = y; — y3 are null solutions:

u;/—i—B u' 4+ C(t)u =0

v + B(t)v' + C(thv =0
Solve those two linear equations for the numhbB(s) andC'(¢) at each time. Then
y1 is a particular solution s9;” + B(t)y, + C(t)y1 gives f(t).

Problem Set 2.5, page 127

1

(Resistors in parallel) Two parallel resista®s and R, connect a node at voltagé
to a node at voltage zero. The currents Byg?,; andV/R.. What is the total current
I between the nodes ? Writing,» for the ratioV’/1, what isR;5 in terms of R, and
Ry?

Solution CurrentsV/R; andV/R; in parallel give total currenf = V/R; + V/Ro.
Then the effective resistance In= V/R has

1_ 1 1 _R1+R2 R1R>

R R "R RR Ri+Rs
(Inductor and capacitor in parallel) Those elements cormaode at voltag e’ to a
node at voltage zero (grounded node). The currents (&féiwL)e™! and

V(iwC)e™t. The total current/e™’ between the nodes is their sum. Writing
Zy2e™* for the ratioVe™? /Ie™t, what isZ;» in terms ofiwL andiwC ?

Solution This is like Problem 1 with impedancésL and1/iwC in parallel, instead
of resistance®?; and R,. The effective impedance imitates that previous formuta fo
R = RlRQ/(Rl + RQ) .

and R =
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7 Z1Zy  iwLl(1/iwC)  iwl
- Z1+ Zs "~ wL + (iwC)—l T 1—-w2LC
The impedance of an RLC loop B = iwL + R + 1/iwC. This impedancé is real
whenw = . This impedance is pure imaginary when . This impedance is

zero when .

Solution Z is real wheniwL cancels withl /iwC = —i/wC. ThenwL = 1/wC and
w? = 1/LC. Z isimaginary whenR = 0. The impedance is zero when bath= 0
andw? = 1/LC.

What is the impedanc® of an RLC loop whemR = L = C' = 17? Draw a graph that
shows the magnitudé¢Z| as a function ofv.

Solution An RLC loop adds the impedanceR + iwL + i/(iwC). In case
R =L = C =1, the total impedance in seriesZs= 1 + iw + 1/iw. The magni-
tude|Z| = (1 4 (w — 1/w)?)/? will equal 1 atw = 1. For largew, | Z| is asymptotic
to the line| Z| = w. For smalky, | Z| is asymptotic to the curviZ| = 1/w.

Why does an LC loop with no resistor produc®@ phase shift between current
and voltage ? Current goes around the loop from a batteryltsfg®l” in the loop.

Solution The phase shift is the angle of the complex impedanic&Vith no resistor,
R=0andZ = iwL+ (1/iwC) = i(wL — (1/wC)). This pure imaginary number has
angled = +7/2 = £90 ° in the complex plane.

The mechanical equivalent of zero resistance is zero dampiny” + ky = coswt.
Find ¢; andY starting fromy(0) = 0 andy’(0) = 0 with w2 = k/m.

y(t) = c1 coswpt +Y coswt.

That answer can be written in two equivalent ways::
. —w)t . +w)t
y =Y (coswt — coswyt) = 2Y sin (@n 5 w) sin (n > w) .

Solution The complete solution ig = c¢; cos wy,t + ¢ sin wyt + (coswt) /(k — mw?).
The initial conditiongy = y’ = 0 determine:; andc, :
y(0)=0 c1 = —1/(k — mw?) y'(0)=0 ca =0.

Theny(t) = (coswt — cos wyt)/(k — mw?). The identitycoswt — cosw,t =
2sin W=gnlt gipy (en)t eypressey as the product of two oscillations.
Suppose the driving frequency is close tow, in Problem 2. A fast oscillation
sin[(w, + w)t/2] is multiplying a very slow oscillation2Y sin[(w, — w)t/2].
By hand or by computer, draw the graph of = (sint)(sin9¢) from 0 to 2.

You should see a fast sine curve inside a slow sine curve.i3 hiseat

Solution Whenw is close taw,,, the first (bold) formulain Problem 6 is ne@f0. The
second formulais much better:

- Wn t . . .
% ~ (w—wp)t sin — sinw,t Yy~ (w— wp)tsinw,t
This shows the typical factor for resonance. The graph @f= (sint)(sin 9¢) has
w = 10 andw,, = 8, so that(10 — 8)/2 = 1 and(10 + 8)/2 = 9. The graph shows a
fast “sin 9¢” curve inside a slow$in ¢” curve : good to draw by computer.

"
2 sin (w+wn)
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8 Whatm, b, k, F' equation for a mass-dashpot-spring-force correspondsrthikoff's

10

11

12

Voltage Law around a loop? What force balance equation onss marresponds to
Kirchhoff's Current Law ?

Solution The Voltage Law says thabltage drops add to zercaround a loop:

dl
T +
This corresponds towy " + by’ + ky = f. The Current Law says that “flow in equals
flow out” at every node. The mechanical analog is tfiatces balancé at every node.

. . 1 ,
Equation (5) isL RI+ ol /Idt = Vet

In a static structure (no movement) we can have force balameations in the, y, and
z direction. In a dynamic structure (with movement) the ferceelude the inertia term
my " and the friction terndy’.

If you only know the natural frequencay, and the damping coefficierit for one
mass and one spring, why is thabt enoughto find the damped frequenay, ?
If you know all of m, b, k what iswy ?

Solution If we only knoww? = k/m andb, that does not determine the damping
ratio Z = b?/4mk or the damped frequeney; = /p? — w2 with p = B/2A =
b/2m = w,Z in equation (2.4.30). We neellree numberss inm, b, k or two ratios
as inw? = k/mand2p = b/m.
Varying the number in a first order equatiop’ — ay = 1 changes thepeedof the
response. Varying andC' in a second order equatiori’ + By’ + Cy = 1 changes
theform of the response. Explain the difference.
Solution The growth factor in a first order equationd®. The units ofa are1/time
and this controls the speed. For a second-order equation By’ + Cy’ = f, the
coefficientsB andC' control not only the frequenay,, = +/C but also the form of
y(t) : damped oscillation i3 < 4C and overdamping i3? > 4C.
Find the step responsét) = y,, + v, for this overdamped system:

r” +25r +r =1 with »(0) =0 and r’'(0) = 0.
Solution The roots ofs? + 2.55 + 1 = (s + 2)(s + %) ares; = —2andsy = —
Then equation (18) for the step response gives

1 1 4
T(t) =1+ <_§€2t + 2625/2) /(_3/2) — 14+ 567215 _ geft/2.

1
5

Check that-(0) = 0 andr’(0) = 0 (andr(cc) = 1).

Find the step respons¢t) = y, + y, for this critically damped system. The double
roots = —1 produces what form for the null solution ?

r” +2r' +r =1 with »(0) =0 and r'(0) = 0.
Solution The characteristic equatiof + 2s + 1 = 0 has a double root = —1. The
null solution isy,, = c1e™* 4 cate™*. The particular solution withf = 1isy, = 1.
The initial conditions give;; andcs :
r(t) = cret + catet + 1
r0)=c+1=0 cp =—1
r’'(0) =—c1+ca+1=0 co3=—2
r(t) =1—(1+ 2t)e*



62 Chapter 2. Second Order Equations

13 Find the step responsét) for this underdamped system using equation (22):
r” 47" +r=1 with »(0) =0 and r’(0) = 0.
Solution Equation (22) gives the step response for an underdamptshsys

rit)=1- Yn o=t sin(wat + ).
wq

Thenr” +r’ +r =1hasm = b=k = 1 andb? < 4mk (underdamping).

b 1 5 k 2 2 o 3 D 1 ™
P=g5-=3 ¥ Wi =wn —P" = cos ¢ o T3 ¢ 3
e . 2 3
Substituting in the formula giveqt) = 1 — 7§e_t/2 sin (%t + g)

14 Find the step responsét) for this undamped system and compare with (22):
r” +r=1 with (0) =0 and r’(0) = 0.
Solution Nowr” +r =1 hasm = k = 1 andb = 0 (no damping):
Inthiscase p=0 w2 =1 Wy = Wy, cosp=2L=0 ¢=7.
Substituting into (22) gives(t) =1 —sin (t+ %) =1 — cos t.
15 For b?> < 4mk (underdamping), what parameter decides the speed at whécstep

response(t) rises tor(oco) = 1? Show that thepeak timeis T = w/wy when
r(t) reaches its maximum before settling backte 1. At peak timer’(T) = 0.

Solution With underdamping, formula (22) has the decay factoP’. Then
p = B/2A = b/2m is the decay rate. The “peak time” is the time whereaches

its maximum (its peak). That timf€ hasdr/dt = 0.
d n - _ :
d—:; S (—pe P sin(wat + ¢) + wae P cos(wat + ¢)) =0 at t =T (peak time)
wa
—psin(wgT + ¢) + wq cos(wgT + ¢) =0

tan(wqaT + @) = wq/p Whichis tan ¢

Thenw,T =7 and T = w/wq. (Note: | seem to getr/wy.)

16 If the voltage sourcé/(¢) in an RLC loop is a unit step function, what resistarite
will produce an overshoot toya = 1.2 if C = 1076 Farads and. = 1 Henry?
(Problem 15) found the peak tiffewhenr(T") = rmax)-

Sketch two graphs of(t) for p; < py. Sketch two graphs as; increases.
Solution The peaktime if" = 7/wy. Thenw,T = = and we want = 1.2:
Tmax(T) =1 — Z—Ze‘pT sin(m + ¢)

1.2=1+4 Z—Ze‘pT sin(¢) =1+ e P
0.2 = e~P™/wa
pr/wg = —In(0.2) =1Inb5

We substitutey = B/24 = R/2wL andwy = /w2 —w? = /(1/LC) — w?. With
known values of. andC and w we can findR.
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17

18

19

20

What values ofn, b, k will give the step responset) = 1 — v/2e *sin(t + Z)?

Solution This response(t) matches equation (22) when, = v/2wg andp = 1
and¢ = w/4. Then

wi=w? —p? =202 —1 giveswy =1 and w, = V2.

Thereforew? = k/m = 2 andp = b/2m = 1. The numbersn, b, k are proportional
to1,2,2.
What happens to the — w; — w, right triangle as the damping ratig, /p increases

to 1 (critical damping) ? At that point the damped frequengybecomes . The
step response becomgs) =

Solution Critical damping has equal roots = s, andb? = 4mk and damping ratio
Z = 1andwy = w,Vv1— 22 = 0. (The oscillation disappears and the damped
frequency goes tw; = 0 so thatp = 0.) Then the step response is

nt
r(t) =1-—

qte

— ptsin(wgt) — 1 — w,te P

The rootssy, s = —p = iwy are poles of the transfer function1 /(As? + Bs + C)

Show directly that the product of the roots = —p + iwg andss = —p — iwy is
5182 = w2. The sum of the roots is-2p. The quadratic equation with those roots
is s + 2ps + w? = 0.

M Imaginary axis

b iy

> Real axis

) Circle of radius wy,
— Wqg

Solution Multiplying the complex conjugate number = —p + iwg gives

s> = (—=p + iwq) (—p — iwq) = p* + w3 = w?.

For any quadraticAs? + Bs + C = A(s — s1)(s — s2),C matchesAs;sp. Then
5180 = C'/A = w?2. Complex rootstay on the circle of radiusw,,, as in the picture.

Adding —p + iw to —p — iw givess; + s2 = —2p. This always equals B/A.
Suppose is increased whilev,, is held constant. How do the roots ands, move ?

Solution Increasing will make both roots go along the circle in the direction-ab,, .
Problem 19 showed that they stay on the circle of radiysintil they meet at-w,,. At
that points; + so = —2w,, = —2p. Therefore that value qof is w,,.

Increasing beyondw,, will give two negative real rootsthat add to—2w,, .
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21 Suppose the masa is increased while the coefficierisandk are unchanged. What
happens to the rootg andss ?

Solution The key numbeB? — 4AC = b> — 4mk will eventually go negative when
m is increased. The roots will be complex (a conjugate paidrtter increasing the
massm will decrease both = b/2m andw? = k/m. The roots approach zero.

22 Ramp response How could you findy(¢) whenF = ¢ is a ramp function ?
y" + 2py’ + w2y = W3t starting fromy(0) = 0 and y’(0) = 0.

A particular solution (straight line) ig, = . The null solution still has the
formy, = . Find the coefficientg; andcy in the null solution from the two
conditions at = 0.

This ramp responsgt) can also be seen as the integral of .
Solution A particular solution igy, = C + ¢. Substitute into the equation:
y" +2py’ + Wiy =0+ 2p+ wi(C +t) = wit. ThusC = —2p/w?.

The null solution is stilly,, = c1e*1? + coe®2t. We findc; andc, att = 0:

y=cre’t e +C+t=ci+ca+C =0
y' = c151% %t 4 cps0e®t 41 =151 +caso +1 =0
Solving those equations gives = <22—L andc, = +=C54 with C = —2p/w?.

The ramp response is also the integral ofstep response

Problem Set 2.6, page 137

Find a particular solution by inspection (or the method of undetermined coefficients)

1 (@y"+y=4 (b)y" +y'=4 ©y" =4
Solution (a)y, =4 (b)y, = 4t (©)yp = 22

2 @y"+y +y=¢ 0)y" +y' +y=e
Solution (a)y, = 3¢’ Oy, =e/(P+c+1)

3 (@y" —y=cost (0)y” +y = cos 2t ©y"+y=t+e
Solution (a)y, = —4cost  (b)y, = —3 cos 2t ©) yp =t + 2et

4 For thesef (t), predict the form ofy(¢) with undetermined coefficients:
@ f(t) =1t (b) f(t) = cos 2t () f(t)=tcost
Solution (a)y, = at® + bt?> + ct +d (b) yp, = acos2t + bsin 2t

(€)yp = (At + B) cost + (Ct + D) sint
5 Predict the form for(¢) when the right hand side is
(a) F(t) = e (b) £(t) = te! (0) F(t) =’ cos t
Solution (a)y, = Ye Oy, = (Yt + Z)et (€)yp = ae' cost+be'sint
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6

For f(t) = e“* when is the prediction foy(¢) different fromY et ?
Solution There will be ate®* term iny,, whene®! is a null solution. This is resonance:

A + Bc+C =0and cis sy Or so.

Problems 7-11: Use the method of undetermined coefficiente find a solution y, (¢).

7

10

@y" + 9y =e* (b)y" + 9y = te*
Solution (a)y, = Ye? with 4Ye* + 9Ye? = ¢* andY = &
Oy, = (Yt+ Z)e* withy’ = 2Yt+Y +2Z)e* andy” = (4Yt +4Y +4Z)e*.
The equationy” + 9y = te?! gives(4Yt +4Y +4Z + 9Yt + 92)e?! = te?.
Thenl3Yt = tanddY+13Z = 0giveY = ; andZ = — &Y andy, = 5 (t — 75)e>".
@y"+y' =t+1 (0)y” +y" =t +1
Solution (@)y, = at* +bt andy” +y’' =2a+2at +b=1¢+ 1.
Thena = § andb =0 and y, = 1¢2.
*Notice thaty, = constant is a null solution so we needed to assymne at? + bt.
(b) yp = at*+bt*+ct (NOT +d) andy” +y' = (6at+2b)+ (3at*+2bt +c) = t*+1.
Then3a = 1and6a +2b =0and2b +c=1 : y, = 3t> — 1t% + 3.
(@y"” +3y=cost () y” +3y=tcost
Solution (a)y, = Acost + Bsint.
y;/ + 3y, = —Acost — Bsint + 3Acost + 3Bsint = cost.
Then2A = 1 and2B = 0 andy, = 1 cost.
(b) yp = (At + B) cost + (Ct + D) sint.

! .
Y, = (A+ Ct+ D)cost + (—At — B+ C)sint.
y, + 3yp = Ccost — Asint + (—A — Ct — D)sint + (—At — B + C)cost +
3(At + B) cost + 3(Ct + D) sint = tcost.

Match 34t — At = tandC — B+ C + 3B = 0 and-Ct + 3Ct = 0 and
—-A—-A—-D+3D=0.

Then A = %, C=0, B=0, D:A:% gives yp, = %tcost—i—%sint.
@y"+y' +y=1= Oy +y' +y=1t
Solution (a)y, = at*+bt+cgivey,+y,+y = (2a)+(2at+b)+ (at® +bt+c) = t2.

Thena = 1and2a +b =0and2a +b+c=0givea =1, b = -2, ¢ =0 :
yp =t — 2t.

(b) Nowy, = at? + bt + ¢ + dt>. Added into part (a), the newt* produces
y" +y +y=(2a)+ (2at + b) + (at> + bt + ¢) + d(6t + 3t> +t3) =t + =0

Thend = 1, 3d+a = 0, 6d + b+ 2a = 0, 20+b+c =0
gived =1,a=-3,b=0,c=6:y, = t> — 3t*> + 6.
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11 @y" +y' ' +y=cost O)y"+y' +y=tsint
Solution (a)y, = Acost + Bsint.
Yy +ys+uyp=(—A+ B+ A)cost + (-B — A+ B)sint = cost.
ThenB = 1 andA = 0 andy, = sint.

(b) The forms fory, andy, andy,’ are the same as in 2.6.9 (b). Thgfry, +y, equals
Ccost — Asint+ (—=A—Ct—D)sint + (—At — B+ C) cost + (A+ Ct+ D) cost
+(—At — B+ C)sint + (Ct+ D)sint = tsint.

Match coefficients of cost, tsint, cost,sint :

-A+C+A=0 -C-A+C =1 C-B+C+A+D+B=0
—-A-A-D-B+C+D=0.

ThenA=-1,C=0, B=2, D=1 give y, = —tcost + 2cost.
Problems 12—-14 involve resonance. Multiply the usual formfoy,, by t.
12 (@)y" +y=e" (b)y"” +y =cost
Solution (a) Look fory, = Yte®. Theny) =Y (it 4 1)e™.
Yy +yp = Y (i%t + 2ie™) + Yite' = 2iYe'.
This matcheg® on the right side whell = 1/2i andy,, = te®t/2i = —ite®t /2.
(b) Look fory,, = At cost+ Btsint. Theny, = Acost— Atsint+ Bsint+ Bt cost.
y, +y=—2Asint — Atcost + 2B cost — Btsint + Atcost + Btsint = cost.
ThenA =0 and B =1 and y, = 1tsint.
13 (@)y" —4y' +3y=¢" (b)y" -4y’ +3y ="
Solution (a) Look fory, = cte® with y) = c(t + 1)e’ andy, = c(t 4 2)e".

. 1 1
yé/ — 4y1§ + 3yp = (2¢ — 4c)e’ = €' with ¢ = —5 and yp, = —Etet.
(b) Look fory,, = cte® with y, = ¢(3t + 1)e* andy, = ¢(9t + 6)e™.
. 1 1
Yy — 4y, + 3y, = (6c — 4c)e® =¥ with ¢ = 3 and y, = Ete?’t.

14 @y —y=-¢t (b)y' —y =te! ©y'—y=-ctcost
Solution (a) Look fory, = cte with i) = ¢(t + 1)e’.
* when ¢ =1 and y, = te’.

(b) Look fory,, = ct®e’ with y, = c(t* + 2t)e".

Theny; —yy=ce' =e

1 1
Then y, — y, = c(t* + 2t — t*)e’ = te' when ¢ = 5 andy, = 5t2e’5.

(c) Look fory, = Ae’ cost + Be'sint. Then
y, = Ae’ cost — Ae’sint + Be'sint 4 Be' cost.

/_

Yp — Yp = —Ae'sint + Be' cost = e’ cost whenA =0, B = 1, andy,, = etsint.
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15

16

17

18

19

Fory” + 4y = e? sin t (exponential times sinusoidal) we have two choices:
1 (Real) Substitute, = Me' cos t + Ne' sin ¢: determineM and N
2 (Complex) Solve:” 4 4z = e+t Theny is the imaginary part of.
Use both methods to find the sam@)—which do you prefer ?
Solution Method 1 hasy, = Me'cost — Me'sint + Ne'sint + Ne'cost =
(M + N)etcost + (—M + N)et sint.
Theny, +4y, = (M + N)e' cost — (M + N)e'sint 4+ (—M + N) e’ sint +
(—M + N)e'cost +4M e cost + 4N e’ sint.
This equals:! sint when2N +4M = 0 and—2M + 4N = 1.
Then N = —-2M and 2M — 8M = landM = -+ N = 2
Yp = —i5€’ cost+ el sint.
Method 2 Look forz, = Ze(tD. Thenz) + 4z, = Z [(1+14)% +4] e+t =
(1)t givesZ = 1/(4 + 24).
Take the imaginary part of, :

(1+4)t t t i sint)(4 — 24 et
mS = Im® (cost + isint)( i) = —(—2cost + 4sint).
4421 16 +4 20

This complex method was shorter and easier. It producedsines,.
(@) Which values of give resonance fay” + 3y’ — 4y = tet ?

I

Solution ¢ +3c—4= (c—1)(c+4). Soc = 1 andc = —4 will give resonance.
(b) What form would you substitute fai(¢) if there is no resonance ?

Solution With no resonance look fay, = (at + b)e*.

(c) What form would you use wheanproduces resonance ?

Solution With resonance look fog, = (at? + bt)e. If we also look forde, this
will be a null solution and we cannot determise

This is the rule for equationB(D)y = e with resonance’(c) = 0:

If P(c)=0andP’(c) # 0, look for a solutiony,, = Cte®* (m =1)
If cis a root of multiplicitym, theny, has the form .

Solution If ¢ is a root of P with multiplicity m, then multiply the usuat’ et by t™.
(a) To solved*y /dt* — y = t3e>, what form do you expect fay(t) ?
(b) If the right side becomes cos 5t, which8 coefficients are to be determined ?

Solution (a) The exponent = 5 is not a root of P(D) = D* — 1 (5% # 1).
So look fory, = (at® + bt? + ct + d)e.

(b) If the right side i cos 5t then
yp = (at® + bt% + ct + d) cos 5t + (et + ft? + gt + h) sin 5t.

Fory’ —ay = f(t), the method of undetermined coefficients is looking for @ht
hand sidesf (¢) so that the usual formulg, = ¢ [ e~ f(s)ds is easy to integrate.
Find these integrals for the “nice functiong™= e, f = ¢™*, andf =t
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/e_asecsds /e“”emsds /e_“ssds

Solution The equation hag’ — ay so the growth factor (the impulse response) is
g(t) = e%. This problem connects the method of undetermined cosftiito the

ordinary formulay, = [ g(t — s)f(s) ds. The integral[ e®*=*) f(s) ds is easy for:

(c—a)s ) (iw—a)s
/efasecs dS — € \/\efaSeZUJS dS — e.
(c—a) iw—a

1
/sefas ds = — (2 + ¥> e .

Problems 20-27 develop the method of variation of parametsr

20 Find two solutionsy;, y2 toy” + 3y’ + 2y = 0. Use those in formula (13) to solve
@y"+3y +2y=e"  (b)y"+3y'+2y=e""

Solution (a)y” + 3y’ + 2y leads tos? + 3s + 2 = (s + 1)(s + 2). The null solutions
arey; = e~* andy, = e~ 2. The Variation of Parameters formula is

ya f : s _ _
Yp =—1 %-Fyz % with W = y1y5 —yoys = (—2—1)e fe ?' = —3e7 3t

[ = €' givesy, = +— -

3 e3¢ 3
1 1 1
—— et = —et.
6 9 18

(b) Againy; = e~! andy, = e~ 2!. Now f = e~ ! gives resonance archppears :

+ e—t / 6_2t€_t e—2t / e—te—t e—t t e—2t . 1 (t 1) s
— _ — = —1 — e = — —_ e .
Yp 3 =3t 3 oot 3 3 3

e—t e—2tet e—2t / e—tet e—t 6215 e—2t 3t

e

21 Find two solutions tg;” + 4y’ = 0 and use variation of parameters for
(a)y// +4y/ — 2t (b)y" +4y/ — e 4

Solution (@) y” + 4y’ = 0 has null solutiong;; = 1 = €% andy, = e .
ThenW = y1ys — y2y{ = —4e~%t. The equation hag = 2.

e—4tp2t (1)6215 e2t bt ezt
From (13):y, = —1 ‘4t/ =—4e ¥ —)=—.
(13):5 /—46*‘“ te e w5 ¢ \T:m) T 12

(b) f = e~* is also a null solution : expect resonance and a factor

Yp = _1/Le4t+e4t/ (1)67“ _ _e_4t _ e 4t E .
JP _46—4t —46_4t 16 4
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22

23

24

25

Find an equatiorny” + By’ + Cy = 0 that is solved byy; = e andy, = te’.
If the right side isf (¢) = 1, what solution comes from thé P formula (13) ?

Solution With y; = e andy, = te?, the exponent = 1 must be a double root :
As* 4+ Bs + C = A(s — 1)? and the equation can bg” — 2y’ +y = f(t).
With f(t) = 1andW = y1ys — yay{ = et(e! + tet) — tel(et) = e2t, eq. (13) gives

tet(1) et(1) _ _ _
yp = —et/ 7 —|—tet/7 =—e(—te" —e ) +tel(—e) =1

yp = 1 isa good solution toy” — 2y" +y = 1.

y" — 5y’ + 6y = 0 is solved byy; = e?' andy, = €3, becauses = 2 and
s = 3 come froms? — 55 + 6 = 0. Now solvey” — 5y’ + 6y = 12 in two ways:

1. Undetermined coefficients (or inspection)2. Variation of parameters using (13)

The answers are different. Are the initial conditions diffiet ?

Solution Solvingy” — 5y’ + 6y = 12 givesy, = 2 by inspection or undetermined
coefficients.

Usings? — 5s +6 = (s — 2)(s — 3) we havey; = e andy, = €3 andW = €%,
Then setf = 12:

3t 2t —2t —3t
oy [e(12) gy [e®(12) 5 [ 12e 5 [ 12e B B
yp = —€ / e5t +e e5t = —€ _—2 +e _—3 = 6—4 =2

But if those two integrals are computed fréno ¢, the lower limit gives a differeny,, :
t t
12 —atqt 12 —3tqt
_821&/e—2t(12)+83t/6—3t(12)_ezt[ e ] +e3t|: e }
-2 0 —3 0
0 0

=2 — 6e?t + 4e3* = 2 4+ null solution.

What are the initial conditiong(0) andy’(0) for the solution (13) coming from varia-
tion of parameters, starting from agy andy, ?

t
Solution Every integrall (t) = / h(s) ds starts fromI(0) = 0 andI’(0) = h(0)

0
by the Fundamental Theorem of Calculus. For equation (1®),divesy,(0) = 0
andy, (0) = 0 (which can be checked fgf, = 2 — 6¢*' + 4¢3 in Problem 23).

The equation;” = 0 is solved byy; = 1 andy, = t. Use variation of parameters to
solvey” =t and alsoy”’ = 2.

Solution Those null solutiong; = 1 andy, = t give W = y;y4 = 1. Then
T
O L R e

Those are correct solutions4d = t andy” = 2.
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26 Solvey,” + y, = 1 for the step response using variation of parameters, regigfdm
the null solutiong; = cos t andy, = sin t.

Solution The Wronskian ofy; = cost andy, = sint is W = (cost)(sint)’ —
(sint)(cost)’ = 1. Setf = 1 andW = 1 in equation (13):

t (e t
t)(1 t)(1
Yp = —cost/ %—i—smt/ (60871)() = —cost(—cost+ 1) + sint(sint)
0 0

=1 —cost : Stepresponse

27 Solvey,” + 3y’ + 2y, = 1 for the step response starting from the null solutions
_ _ 2t
y1 = e “andy, = e 4.

Solution The Wronskian of; = e~f andy, = e~?'is

W =et(-2e72) — e’zt(—e’t) = —e 3 Setf = 1in (13):
t
2t
_ .t [€ -2t —trt —o |1 o 1
yp = —e / 83t dt+ / 83t =+4e ‘e —1]+e |:§€ —i—ﬂ
0 0
1 1
=—_ —et4+ —e 2
2 + 2

The steady state ig,(co) = 1. This agrees withy” + 3y’ + 2y = 1 wheny =
constant.

28 SolveAy” +Cy = coswt whenAw? = C (the case of resonance). Example 4 suggests
to substitutey = Mt coswt + Ntsinwt. Find M andN.

Solution y = Mtcoswt + Ntsinwt has
y' = M(coswt — wtsinwt) + N (sinwt + wt cos wt).
Now computedy” 4+ Cy whenC = Aw?. The resultis

AM (—2wsinwt — w?t coswt) + Aw? Mt coswt + AN (2w coswt — w?tsinwt) +
Aw? N sin wt = cos wt.

Simplify to AM (—2w sin wt)+ AN (2w coswt) = coswt. ThenM = 0andN = 1/2Aw.
29 Putg(t) into the great formulas (17)-(18) to see the equations atimra.
Solution The equation above (17) came irom tieof P equation (13)t:

Particular solution ettt T es2t o
Constant coefficients ¥r() = J— /e ST )dT+S T /8 > f(T)dT
0 0
s1(t—T) e52(t=T) o
This is the integral ofif( )+ f(T) whichis exactlyy(t —T') f(T).
82 — 51 S2 — 81

For equal roots; = s2, the equation after (17) is tHé of P equation:

t t
Particular solution s s s .
Null solutions eSt,tzelgt yp(t) = —e t/Te TF(T)dT + te t/e Tf(T)dT
0 0
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This is the integral of-Te**=T) f(T) + te*t=T) f(T) dt = (t — T)e**=1) f(T).
This is exactlyg(t — T) f(T) wheng(t) = te*t in the equal roots case.
Neat conclusion Variation of Parameters gives exactly[ g(t — T') f(T)dT.

Problem Set 2.7, page 148

1 Take the Laplace transform of each term in these equatiodssatve forY (s),
with y(0) = 0 andy’(0) = 1. Find the roots; andsy — the poles ofY’(s) :

Undamped y' + 0y +16y =0
Underdamped y' 4+ 2y + 16y =0
Critically damped y'+ 8y + 16y =0
Overdamped Yy’ +10y" + 16y = 0

For the overdamped case us@RE&write Y (s) = A/(s — s1) + B/(s — s2).
Solution (a) Taking the Laplace Transform gf’ 4+ 0y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y’(0) +0-sY (s) — 0-y(0) + 16Y(s) =0
s?Y (s) =14+ 16Y(s) =0
Y(s)(s*+16) =1

1
M,
The poles oY’ = roots ofs? + 16 ares = 4i and—4i.
(b) Taking the Laplace Transform of” + 2y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y’(0) +2-sY (s) —2-y(0) + 16Y(s) =0
s2Y(s) — 1+ 2sY(s) + 16Y(s) =0
Y(s)(s?+2s+16) =1
1
V) = st 16

The roots ofs> + 2s + 16 are—1 — i1/15 and—1 + iy/15. Underdamping.
(c) Taking the Laplace Transform of’ + 8y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y'(0) + 8- sY (s) — 2-y(0) + 16Y(s) =0
s2Y(s) — 1 +8sY(s) + 16Y(s) =0
Y(s)(s? +8s+16) =1
1 1

2185416 (s 4)2
There is a double pole at= —4. Critical damping.

(d) Taking the Laplace Transform gf’ + 10y’ + 16y = 0 gives:

Y(s) =
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s2Y (s) — sy(0) —y’(0) + 10 - sY(s) — 10 - y(0) + 16Y(s) =0
s2Y(s) =1+ 10sY (s) +16Y(s) =0
Y (s)(s* +10s + 16) = 1

1 1 1 1

Y(s) = =
) = 105716 572658 6612 6678
The poles ofY (s) are—2 and—8: Overdamping.
Invert the four transform¥ (s) in Problem 1 to findy(¢).

Solution ()Y (s) = ﬁ = % P16 inverts toy(t) = 35in(4t)'

(b) Y(s) = m = m inverts by equation (28) to
y(t) = e~ t cos(v/15t) /V/15.

(€)Y (s) = G _&4)2 inverts toy(t) = te—4t.

(d)Y(s) = 6(51 2~ 6(514— ) inverts toy(t) = %e—zt — %e_&.

(a) Find the Laplace Transforii(s) from the equation’ = e** with y(0) = A.
(b) Use PR to breakY (s) into two fractionsCy /(s — a) + Ca/s.

(c) InvertY (s) to findy(¢) and check thay’ = e** andy(0) = A.

Solution (a) Taking the Laplace Transform gf = e gives:

1 -1

(b) By using partial fraction¥ (s) = 4 + 4+ =
s (s—a) s

(c) The inverse Laplace Transform of each term gives:
1

1
y(t) = A+ —eot — —
a a

1 . 1 1
—e = e withy(0) = A+ — — —
a a a

(a) Find the transforn (s) wheny” = et with y(0) = A andy’(0) =
(b) SplitY (s) intoC1 /(s — a) + C2/(s — a)* + C3/s.

(c) InvertY (s) to findy(¢). Checky” = e andy(0) = A andy’(0) = B.
Solution (a) The Laplace Transform gf’ = e gives:

Differentiating gives y'(t) = a A.
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1
2Y _ ! —
WOV O =
s?Y(s) =sA+ B+ ——
A B 71
Y(s) =242 4 -
() s 82 s%(s—a)
(b) 1 7Cs+D+ E  (s—a)(Cs+ D)+ Es?
s2(s—a) 82 s—a s2(s —a) '
1 1 1
That numerator matchésvhenD = ——,C = ——  F = —.
a a a

1t 1
©)ylt)=A+Bt+C+Dt+ FEe' = A+ Bt — — — — + —e°.
a2 a a?

5 Transform these differential equations to firids) :
(@) y" — v = 1withy(0) =4 andy’(0) =0
(b) v + y = cos wt with y(0) =¢'(0) = 0 andw # 1
(€) ¥+ y = cos twith y(0) = 3'(0) = 0. What changed fow =17

Solution (a) The Laplace Transform gf’ —y’ = 1is

2 (s) = 59(0) ~ y'(0) ~ (s (s) ~ y(0)) =
2 (s) —ds — s (s) +4 =
Y (s)(s? — ) = é tds—4
v = S
Y(s) = =+ >+ —

82 s s—1

(b) The Laplace Transform gf” + y = coswt with y(0) = 0 andy’(0) = 0:

_5
52 4+ w?
_5
52 + w?
S
(s24+w?)(s?2+1)
(c) The Laplace Transform af” + y = cost with y(0) = 0 andy’(0) = 0:

s?Y (s) — sy(0) —y'(0) + Y (s) =
s?Y(s)+Y(s) =

Y(s) =

73
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S
S
Y (s) = ———— : Double poles from resonance
(s) EFE p

6 Find the Laplace transformfs,, I, F3 of these functiongy, f2, f3:
@ fi(t) =e® =" (b) f2(t) =™ e () fa(t) =tcost

R a—>b
s—a s—b (s—a)(s—b)
. b 1 1 2s
(b) The Laplace Transform ef'* 4+ ¢~ %" is + = .
s—a s+a s2—a?
(c) The Laplace Transform af® is ﬁ by equation (19). Withy = i, write
tcost = ite' + Lte~". Then the transform ofcost is

Solution (a) The Laplace Transform ef? — e’ is

11 +1 1 I(s+i)2+(s—i)? s*2—-1
2(s—4)2  2(s+4)2 2 (s—9)2(s+14)?2  (s241)2
7 For any real or complex:, the transform off = te® is . By writing
cos wt as (et + e~ /2, transformg(t) = tcos wt and h(t) = te' cos wt.
(Notice that the transform df is new)
Solution The transform ofte®t is ﬁ by equation (19). Here:s = iw.
Thent coswt = 1te™? + Lte=™! transforms to

1 1 1
2 (s — iw)? A (s+iw)? 2 (s—iw)(s+iw)®  (s2 +w?)?’
Similarly te! coswt = Ste(+i)t + Lie(1=w)t transforms to

1 1(s+iw)?+ (s —iw)? 52 — w?

1 1 +1 1l -ltiw)’ (s —1—iw)*  (s—1)°-w?
2(s—1—iw)?2 2(s—14+iw)2 2 (s—1—iw)2(s—1+iw)2  ((s —1)24+w?)?’

8 Invert the transformg?, Fy, F5 using PR and PB to discoverfy, fo, f5:

1 S 1
(@) Fi(s) = G-a(-0 (b) F(s) = (s—a)(s—b) (©) Fi(s) = §3—s
Solution (a) Fi(s) = (s—a)(s—0b) - (a—0b)(s—a) * (b—a)(s—b)
The inverse transform ig, = ! et + ! e’

(a — b) (b — (1)

S a b
b _ _ .
O ) = =6 —0 " @-he - T G-aG-b)
The inverse transform i, = e + ot

(a—0) (b—a)
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N

(©) Fy(s) = 85 (s—=1)(s+ 1)s -

+

1
! ! % S+1+SilusingPF3.
. . 1 1
The inverse transformifs = —1 + Ee_t + Eet'
9 Step1 transforms these equations and initial conditions. Stegplves forY (s).
Step3 inverts to findy(t) :
@y —ay=twithy(0) =0
(b) y" + a®y = 1 with y(0) = 1 and y'(0) = 2
(©) y" + 3y’ + 2y = 1 with y(0) = 4 and ¢/(0) = 5.
What particular solutiom,, to (c) comes from using “undetermined coefficientsj,? = %

Solution (a)y’ — ay = t transforms tasY (s) — y(0) — aY (s) = ig with y(0) = 0.
S

1 %  —i: =
Y — — a a a
() s2(s —a) s + 52 +s—a
. . 1 1 1
The inverse transform ig(t) = —— — —t + —e*%.
a? a a?

(b)y" + ay = 1 transforms ta2Y (s) — sy(0) —y’(0) + a?Y (s) = 1 with (0) = 1
S
andy’(0) = 2. Thisis(s? + a?)Y (s) = y'(0) + sy(0) + E :
S

2 S 1 2 a s 1 1 S
Y(s) = + + =

s2+a2 2402 s(s2+a?) as?+a? s2+a? a?s a?s?+a?’

2 1 1
The inverse transform ig(t) = — sin(at) + cos(at) + — — —; cos(at).
a a a

(©)y"+3y'+2y = 1 becomes?Y (s) —sy(0)—y'(0)+3sY (s) —3y(0)+2Y (s) = %

Theny(0) = 4 andy’(0) = 5 give

Y (s) = 1 n 4s+5 1 4(s+1)+1
Cs(s24+35+2)  (s24+3s5+2) s(s+1)(s+2) (s+1)(s+2)

The inverse transform can come frd?3 on page 143. It comes much more quickly

and directly (without Laplace transforms!) from knowingth

Y=Yp+yn=75+cre +ee

y(0) = 2 +c1+c; =4andy’(0) = —c; —2c; = 5add tog — ¢, = £ and
y(t) = % 4+ 127t — %e‘zt.

Questions 10-16 are about partial fractions
10 Show that PE in equation (9) is correct. Multiply both sides by — a)(s — b) :

(%) 1= +

(a) What do those two fractions ir)Y equal at the points = ¢ ands = b?
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(b) The equation ) is correct at those two points and b. It is the equation of
a straight . So why is it correct for every ?

Solution (usingb instead ofcin PF2):

—b -

1=2 + 5T @ after multiplying equation (9) bys — a)(s — b).
a—b b—a

(a) Ats = awe getl = 2=2. At s = b we getl = 2=2.

(b) When the equation of straight lineis correct for two values = ¢ ands = b, it is
correct for all values of.

11 Here is the PE formula with numerators. Formula) had K = 1 andH = 0:
Hs+ K Ha+ K Hb+ K

PR’ G-a)G-b G-aa-b G-ak—b

To show that P® is correct, multiply both sides bys — a)(s — b). You are left
with the equation of a straight . Check your equation at = ¢ and ats = b.
Now it must be correct for alt, and PR’ is proved.

Solution Multiplying by (s — a)(s — b) produces
(Ha+ K)(s—b) (Hb+ K)(s—a)
+ .
a—b b—a
At s = athisisHa+ K = Ha + K + 0: correct. Similarly correct at = b. Since

(*) is linear ins, it is the equation of a straight line. When correct at 2 point o and
s = b, itis correct for every.

12 Break these functions into two partial fractions usin@RRd PR’ ;

*) Hs+ K =

@ 5 0) 5 © 5t
. 1 1 1 1
Solton @) 1 = =962 -9 Y | 1D
1 1
T4(s—2) 4(s+2)
(b) S _ s _ 2 n -2
s2—4  (5—=2)(s+2) (s5—2)2+2) (-4)(s+2)
1 1
_2(5—2)+2(s+2)
Hs+K  Hs+K
© 2 —55+6 (s—2)(s—3)
9OH + K 3H+ K

C(s—2)(2-3)  (3-2)(s—3)
2H+ K 3H+ K
N s—2 s—3
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13 Find the integrals ofa)(b)(c) in Problem 12 by integrating each partial fraction. The
integrals ofC/(s — a) andD/(s — b) are logarithms.

Solution N ds = / 1 — ! d
@ / s2—4%° 4(s—=2) 4(s+2) §
1 s— 2

1 1
zzln(s—Z)—Zln(s+2):_1n

4 s+ 2
s 1 1
(b) /52—4d82/2(s—2)+2(s+2)d8

1 1 1
:51n(s—2)+§ln(s+2):§ln(sz—4)

————ds = d
© s s—2 s—3 y

Hs+ K / 2H+K+3H—|—K
52 —-554+6

—(2H+ K)In(s —2)+ (3H 4+ K) In(s — 3)
14 Extend PB to PR3’ in the same way that PFrextended to PE :

Gs’+ Hs+ K Ga’ + Ha+ K 77
PF3’ = + =+ <.
(s—a)(s=b)(s—¢c) (s—a)la—b)la—c) 7 ?

2
Solution We want Gs tHs+ K = A B © .
(s—a)(s=b)(s—¢c) s—a s—b s—c

We can multiply both sides b{s — a)(s — b)(s — ¢) and solve ford, B, C'. Or we can
use A as given in the problem statement—and permute lettgisc to get B andC
from A. That way is easier, and our three fractions are
a’G+aH+ K 1 b’G+bH+ K 1 AAG+cH+ K 1
(a—b)(a—c) s—a b—a)b—c) s—b (c—a)(c—0b) s—c¢
15 The linear polynomials — b)/(a — b) equalsl ats = a and0 ats = b. Write down a
guadratic polynomial that equalsats = a and0 ats = b ands = c.
(s =b)(s—c)
(a—Db)(a—r¢)
16 What is the numbef’ so thatC'(s — b)(s — ¢)(s — d) equalsl ats = a ?
NoteA complete theory of partial fractions must allow doubletso@vhenb = a). The
formula can be discovered from IBpital's Rule (in PB for example) when

b approaches.. Multiple roots lose the beauty of BFand PB’—we are happy
to stay with simple roots, b, c.

Solution equals) for s = b ands = c. It equalsl for s = a.

1

Solution ChooseC' = .
(a —b)(a —c)(a—d)

Questions 17-21 involve the transformF'(s) = 1 of the delta function f(¢t) = d(t).
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17 Find F(s) from its definition [ f(¢)e~*'dt whenf(t) = 6(t — T'), T > 0.
0

Solution The transform ofi(t — T') is F'(s) = /5(t —T)e *dt = e~*T.
0

18 Transformy” — 2y’ + y = §(¢). Theimpulse responsey(t) transforms intd’ (s) =
transfer function. The double root; = s; = 1 gives a double pole and a net).
Solution With y(0) = y’(0) = 0, the transform igs? — 2s + 1)Y(s) = 1. Then
Y(s) = ﬁ and the inverse transform is the impulse resparigp= g(t) = te?.

19 Find the inverse transformgt) of these transfer functiori(s) :

2

S S S
(a)s_a (b) PR (©) PR
Solution (a)Y (s) = — _s-ata 4, ¢
s—a Ss—a s—a
y(t) = 3(t) + aet
s s 1 1

(b) Using PF2 we haveY (s) = —— 5= G_alsta) = 30 —a) + 2+ a)

. . 1 1
The inverse transform ig(t) = Eeat + Ee—at = coshat

s? 5?2 —a?+a? a? a a
©Y(s) s2 —a? s2 — a? + s2 —a? + 2(s—a) 2(s+a)

y(t) = o(t) + geat — ge_at = 4(t) + asinh(at)

20 Solvey” + y = 4(t) by Laplace transform, witly(0) = ¢’(0) = 0. If you found
y(t) = sin t as | did, this involves a serious mystery¥hat sine solveg” + y = 0,
and it doesn't havg’(0) = 0. Where doe#(¢) come fron? In other words, what is
the derivative ofy’ = cos t if all functions are zero fot < 0?

If y = sint, explainwhyy” = —sint + §(t). Remember thaty = 0 for ¢ < 0.

Problem (20) connects to a remarkable fact. The same impetgonsey = g(t)
solves both of these equation&n impulse att = 0 makes the velocityy ’(0) jump
by 1. Both equations start from(0) = 0.

y" 4+ By’ + Cy = &(t) with y'(0) =0 4" + By’ + Cy = 0 with y'(0) = 1.

Solution y” +y = §(¢) transforms intas?Y (s) + Y (s) = 1.

ThenY (s) = SQLH has the inverse transforgit) = sin ¢.

At time ¢t = 0 the derivative ofy’ = cos(t) is noty” = sin(0) = 0, but rather
y’" = sin(0) + &(t), since the functiog’ = cos(t) jumps from0 to 1 att = 0.
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21 (Similar mystery) These two problems give the sari{e) = s/(s? + 1) and the same
impulse responsg(t) = g(t) = cos t. How can this be ?

@)y’ = —sin t with y(0) = 1 (b)y' = —sin t + &(t) with “y(0) = 0"

Solution (a) The Laplace transform gf (t) = — sin(¢) with y(0) = 1 is
b
s2+1

1 s2+1—-1 &

Y =1- = =
sY(s) s2+1 s2+1 s24+1

sY(s)—1=—

»

Y(s) = s2+1

(b) The Laplace transform of' (t) = — sin(¢) + 6(¢) with y(0) = 0 is
1
sY(s) —y(0) = 21 +1

s24+1-1 _ 52

$24+1 s2+1

S
s2+1
These two problems (a) and (b) give the sar{@) and therefore the samgt). The
reason is thab(¢) in the derivativey’ gives the same result as an initial condition
y(0) = 1. Both cause a jump from = 0 beforet = 0 toy = 1 right aftert = 0. And
both transform td.

sY(s)—0=

Y(s) =

Problems 22-24 involve the Laplace transform of the integrbof y(t).

22 If f(¢) transforms toF'(s), what is the transform of the integralt) =

o,

f(T)dT ?
Answer by transforming the equatidn/dt = f(t) with 2(0) = 0.

t
Solution If h(t) = [ f(T')dT thendh/dt = f(t) with h(0) = 0. Taking the Laplace
0
Transform gives:
F(s)

sH(s) = F(s) and H(s) = .

t
23 Transform and solve the integro-differential equatior- [y dt = 1, y(0) = 0.
0
t
A mystery like Problem 20y = cos t seems to solvg’ + [ ydt = 0,y(0) = 1.
0

t
Solution The Laplace transform aof + [ydt =1 with y(0) =0 is
0
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26
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Chapter 2. Second Order Equations

1 1
Y(s) = =
) (s + %) s s2+1
The inverse transform ofY (s) is y(t) = sin(t)
About the mystery: The derivative @bst is —sint + §(¢) becauserost jumps at
t = 0 from zero fort < 0 (by convention) tal. But | am not seeing a new mystery.

t
Transform and solve the amazing equatigridt + [y dt = &(t).
0

t
Solution The transform of% + /ydt =4(t) is sY(s) + Ys) _ 1.
0

1 S
ThenY (s) = =
(s) (s+1)s s2+1
Note that this follows from Problem 20, where we found tha{(t) has integrain(¢)
and derivative- sin(t) + 4(¢).
The derivative of the delta function is not easy to imagingeis-icalled a “doublet”
because it jumps up t&oco and back down te-co. Find the Laplace transform of the
doubletdd /dt from the rule for the transform of a derivative.

Adoublets’(t) is known by itsintegral i 6'(¢)F(t)dt = — [ §(¢t)F'(t)dt = —F’(0).
Solution The Laplace transform af(¢) is 1. The Laplace transform of the derivative
is sY'(s) — y(0). The Laplace transform of the doublgtt) = dd/dt is therefores.

(Challenge) What function(t) has the transforny (s) = 1/(s? + w?)(s® + a?)?
First use partial fractions to finef and K :

and y(t) = cost.

H K

Yis) = 2+ Pt

1 1 1 1
Solution Y'(s) = = — .

oY) = A @) T @ ) () (@ o)
Theny(t) — sin wt sinat
= w(a? —w?) a(a? —w?)’

Why is the Laplace transform of a unit step functififit) the same as the Laplace

transform of a constant functiof(¢) = 1?
Solution The step function and the constant function are the samieXob.



