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Complete Solutions to Exercises 5.1 
 

1. Since we are given a prime in each case, so we use Proposition (5.2): 

If p is prime then   1p p   . 

(a)  13 13 1 12    . 

(b)   211 211 1 210    . 

(c)   311 311 1 310    . 

(d)   1973 1973 1 1972    . 

(e)   1999 1999 1 1998    . 

(f)   2017 2017 1 2016    . 

 
2. In each case we use formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

    where 1 2
1 2

rk k k
rn p p p     

 This means we need to factorize each of the given numbers into its primes. 
(a) The prime decomposition of 15 5 3  . Applying (5.9) gives 

  1 1 2 415 15 1 1 15 8
3 5 3 5


                                      

. 

 (There are 8 integers between 1 and 15 that are relatively prime to 15.) 
(b) We need to find the prime decomposition of 64; 

664 2 . 
Applying (5.9) with 2p   and 6k   gives 

 6 6 6 51 12 2 1 2 2 32
2 2


                  

. 

Therefore  64 32  .  

(c) Evaluating the prime decomposition of 200 gives 
3 2200 8 25 2 5     

Using formula (5.9) with 200n  , 1 2p   and 2 5p  : 

  1 1 1 4200 200 1 1 200 80
2 5 2 5


                                      

. 

(d) We can write 1000 in its prime decomposition as 

 33 3 31000 10 2 5 2 5     . 

Using formula (5.9) gives 
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  1 1 1 41000 1000 1 1 1000 400
2 5 2 5


                                      

. 

(e) Which prime numbers go into 1001? 
1001 7 11 13   . 

Using the above formula gives 

  1 1 11001 1001 1 1 1
7 11 13

6 10 121001 720
7 11 13


                         
                       

 

(f) The prime factorization of 666 is 

    2666 6 111 2 3 3 37 2 3 37         . 

So 666 is made up of the primes 2, 3 and 37 therefore 

  1 1 1666 666 1 1 1
2 3 37

1 2 36666 216
2 3 37


                         
                       

 

There are 216 integers between 1 and 666 that only have a common factor of 1 
with 666. 
 

3. In each case we only have one prime factor. We can still use formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

(a) We are given 10002 . Applying this formula with 10002n   and 1 2p   we obtain 

 1000 1000 1000 9991 12 2 1 2 2
2 2


                 

.  

Since the only factor is 2 so  1000 9992 2   is the number of odd numbers up to 21000 

which is ½ of 21000, hence 2999. 
(b) Similarly for 10003  we have 

 1000 1000 1000 9991 23 3 1 3 2 3
3 3


                  

. 

 10003  means the number of natural numbers up to 31000 which are not multiples of 

3 is 9992 3 . 
(c) For 10005  we have  

 1000 1000 1000 9991 45 5 1 5 4 5
5 5


                  

. 
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Similarly,  1000 9995 4 5    is the number of integers between 1 and 51000 which are 

not multiples of 5. 
(d) Also for 10007  we have 

 1000 1000 1000 9991 67 7 1 7 6 7
7 7


                  

. 

Hence there are 9996 7  natural numbers up to 71000 which are not multiples of 7. 
 

4. We need to prove      1 11m m mp p p p p       where p is prime.  

Proof. 
Using formula (5.9) with one prime factor p gives 

 
     1 1

11

1 1 By (5.2)   1

m m

m m m

p p
p

pp p p p p p p
p



  

      
               

 

This completes our proof. 
■ 
 

5. How do we show    12 2
2

n n  ? 

Use the result of question 4. 
Proof. 

Using     11m mp p p    with 2p   and m n  gives 

    1

1 1

2 2 1 2
12 2 2 2
2

n n

n n n

 

 

 
        

 

■ 

   1 12 2 2
2

n n n    means that half the natural numbers from 1 to 2n  are 

relatively prime to 2n . Of course, these are all the odd numbers from 1 to 2n . 
 

6. We need to show that    110 4 10m m  . 

Proof. 
We use formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p
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With 10mn  . The prime factors of 10 are 2 and 5, so 
10 2 5m m m  . 

Substituting 10mn  , 1 2p   and 2 5p   into formula (5.9) yields 

 

 1

1 110 10 1 1
2 5

1 4 410 10 4 10
2 5 10

m m

m m m





              
                          

 

This completes our proof. 
■ 

 

7. We need to prove that    1m mn n n  . 

Proof. 
Let the prime decomposition of n be 

1 2 3
1 2 3

rk k k k
rn p p p p      where jp ’s are distinct primes. 

Expanding the right-hand-side of the given statement: 

     
      

   

1 2 1 2

1

1 1 2 2 1 2

1 1 1 2 2 2

1
1

1 2 1 2
1

1 2 1 2
Using the rules of indices

1 1 2 2

Substituting 
r r

r

r r r

r r

mk k k k k km
k kr r

r

k m k k m k k m k k k k
r r

k m k k k m k k k m k
r

n n p p p p p p
n p p

p p p p p p

p p p p p p

 

  

  




  

  

 
             

         
   

 


 

  
 




   

1 1 1 1 2 2 2 2

1

1 1 2 2

1 2
1 2

1 1 1
1 1 1 2 2 2

Using 

1 1
1 1 2 2

Using the rules of indices

r

r r r r

k k k

k m k m

k
r

k m k k k k m k k k k m k k k
r r r

p p p

k m k m k m k m

p p

p p p p p p p p p

p p p p


 



     

 

 

 

                     

            



  
 

     
     

1 2

1 2 1 2

1

1 2

1 2 1 2

r r

k mr
r

r

r r

k m k m
r r

p

k m k m k m
r

mk m k m k m k k k m
r r

p p

p p p

p p p p p p n



  

  





     

   
 
           


  



 

 

This completes our proof because we have    1m mn n n   . 
■ 
 

8. There is only one example of  n n   which is 1n  .  

 

9. In the main text we have 
 n
n


 gives the probability that a number we choose 

between 1 and n is relatively prime to n. Let 164n   then 

         164 2 82 4 41 4 41 2 40 80             . 
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Therefore, the probability that  1, 2, 3, ,164m    is relatively prime to 164 is 

 164 80 20
164 164 41


  . 

 
10. (a) Recall  310  gives the number of incongruent residues which have an inverse 

modulo 310. Converting 310 into its prime factorization 310 31 10 2 5 31    
and applying (5.9) yields 

  1 1 1310 310 1 1 1 120
2 5 31


                          

. 

(b) Proof. We have   1n n np p p   . By part (a) this number   1k k kp p p    

tells us how many integers have an inverse modulo np . Therefore the probability 

of a given residue  mod na p  having an inverse is 

  1 1 11
n n n n n

n n n n

p p p p p
pp p p p

       . 

This completes our proof. 
■ 

 

11. (a) We need to find n such that   2
nn  . 

Recall that  
1 2

1 1 11 1 1
r

n n
p p p


                             

  where the p’s are the primes in the 

prime decomposition of n. This implies we need to find n such that 

1 2

1 1 11 1 1
2r

nn
p p p

                             
 . 

So n can only have one prime 2p   so 2an   where a is a natural number and  

11
2 2

nn
      

. 

(b) We need to find n such that   3
nn  . Similarly to part (a) we have 

1 2

1 1 11 1 1
3r

nn
p p p

                             
 . 

The only prime cannot be 3 because  

1 21
3 3

nn
      

. 

Since we want to cancel the 2 on the numerator so the prime 2 must be present: 
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1 1 11 1
2 3 2

n n
              

2      3 3
n      

 

Hence 2 3a bn   where a and b are natural numbers. 
 

12. We need to find a natural number n such that   3
nn  . This means we are 

looking for a number where less than a third of the natural numbers up to n have 
no factor in common with n apart from 1.  This implies that we need a number 
which has lots of factors because 2/3 of the natural numbers up to n must have a 
common factor greater than 1.  
By the solution to question 11(b) we can say that if n has the prime factors 2 and 

3 present then   3
nn  . If we add another prime factor, 5 say, then we have the 

integer 30 because 2 3 5 30    then 

        3030 2 3 5 1 2 4 8 10
3

            . 

Therefore, one example of   3
nn   is 30n  . 

 

13. We need to prove that   4
15

n n   given 1 2 32 3 5k k kn    . 

Proof. 
Using formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

With 1 2 32 3 5k k kn     gives 

  1 1 11 1 1
2 3 5

1 2 4 4
2 3 5 15

n n

n n


                         
                       

 

Therefore   4
15

n n  . 

■ 

14. We are asked to prove that    1n p
n

p



  where p n . 

Proof. 
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We are given that the prime p satisfies p n  therefore  gcd , 1p n p  . Let S 

be the set of some residues modulo n that are not relatively prime to n: 

, 2 , 3 , , nS p p p p
p

        
 . 

Then   nCard S
p

 . These n
p

 residues are not relatively prime to n. There may be 

others as n may have other prime factors present. By the definition of the Euler 
totient function  n  we have 

     1
1

n pn n np nn n n
p p p p


         

This completes our proof. 
■ 

 
15. (i) The only instance where  n n   is if 1n   (see question 8). But for 1n   

we have  n n  .  

This  n n   is impossible because  n  counts the natural numbers up to n 

which are relatively prime to n. This number cannot exceed n. 
(ii) Proof. 

To show that 
 

0 1
n

n


   we use the result of part (i). By the definition of  n  

and part (i) we have   1 n n  . Substituting this into 
 n
n


 gives 

 10 1
n n

n n n


    . 

■ 
 

16. We need to produce a counter example. Well 

   3 7 10 4     but    3 7 2 6 8     . 

 

17. We are required to prove that     2 1k kp p p p        . 

Proof. 

In question 4 we have already shown that     11m mp p p   . Applying this to 

 kp  gives 

   1 1k kp p p   .    
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We want to use the multiplicative property of  . However to use this we need our 
natural numbers to be relatively prime, that is  

 1gcd , 1 1kp p   . 

Suppose  1gcd , 1 1kp p g    . Then 1kg p   and  1g p  . 

Now one of the factors of 1kp   is p. Clearly p g  because the only divisors greater 

than 1 of 1kp   are 2 3 1, , , , kp p p p  . This implies that p g  because 1kg p  .  

Since  1g p   so  1p p   which is impossible. Therefore our supposition 

 1gcd , 1 1kp p g     must be wrong, so  1gcd , 1 1kp p   . 

Hence using the multiplicative property of   we have 

   
   

   
     
  

1

1

2

2

2

1

1
1 1 By using the result of question 4

1 Because  1
1 By the multiplicative property of  

k k

k

k

k

k

p p p

p p
p p p
p p p p p
p p p

  

 


  
 











         
 

      
      
     

 

We have shown     2 1k kp p p p        . 
■ 

 

18. We need to prove that    d n   provided d n .  

Proof. 
Using the hint and writing d and n in its prime decomposition: 

1 2
1 2

rm m m
rd p p p     and 11 1 2 2

1 2 1
rr r kmm k m k m k m

r r kn p p p p p  
         

where the p’s are distinct primes. From 1 2
1 2

rm m m
rd p p p     we have 1

1
mp d  

where 1m  is the highest power of the prime 1p  which divides into d. However, 

there may be higher powers of 1p  which divide into n. We have written the 

highest power of 1p  which divides into n as 1 1m k . Similarly, for 2 3, , , rp p p . 

That is why we have 
11 1 2 2

1 2 1
rr r kmm k m k m k m

r r kn p p p p p  
         

Finding the Euler totient function for each of these numbers gives 

   
     

1 2

1 2

1 2

1 2 By Lemma (5.7)

r

r

m m m
r

m m m
r

d p p p

p p p

 

  

   
       




 

Similarly we have 
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           11 1 2 2
1 2 1

rr r kmm k m k m k m
r r kn p p p p p       

          (*) 

By result of question 4: 

    11m mp p p    

We have 

   1 1 1
1 1 11m mp p p    

   1 1 1 1 1
1 1 11m k m kp p p      

Therefore    1 1 1
1 1
m m kp p   . Similarly,    2 2 2

2 2
m m kp p   ,  ,    r r rm m k

r rp p  

. 
From this last evaluation and using (*) we have 

     
 

 1 2
1 2

rm m m
r

d

p p p n


   





 

Therefore    d n  . 

■ 
19. We need to show that  2 1 22 k l   . 

Proof. 
Using the result of question 4: 

    11m mp p p   , 

with 2p   and 2 1m k   gives 

   
 

2 1 2 1 1

22 2

2 2 1 2

2 2 where  2 .

k k

k k kl l

    

   
 

This is our required result. 
■ 

 

20. How do we prove      1 1k k k kp q p q q p    ? 

By using the multiplicative property of the   function and Proposition (5.4): 

  1k k kp p p    

Proof. 
Since we are given that p and q are distinct primes so by Lemma (5.7): 

       1 2 1 2
1 2 1 2

r rk k k k k k
r rp p p p p p            

We can use this multiplicative property because p and q are distinct primes so 

 gcd , 1k kp q  : 
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     k k k kp q p q      

Applying Proposition (5.4) to each of these gives: 

     
  

   
 

   

1 1

1 1 1 1

1 1

1 1

1 1

1 1

Expanding brackets
1 Factorizing

1 1
1 1 Factorizing

Because

k k k k

k k k k

k k k k k k k k

k k

k k

k k

k k

p q p q
p p q q
p q p q p q p q
p q pq p q
p q q p p
p q q p
p q q p

  

 

 

   

 

 

 

 


  

       
            
      
           

   1p p    

 

Hence we have      1 1k k k kp q p q p q      which is our required result. 
■ 

 
21. We need to prove Corollary (5.6) which claims: 

       1 2 1 2k km m m m m m            provided the integers jm  are 

pairwise prime. That is  gcd , 1i jm m   for i j  and 1 ,i j k  . 

How do we prove this result? 
Use mathematical induction and the three steps of induction are: 
Step 1: Check for some base case 1 2,m m . 

Step 2: Assume the result is true for 1 2 3, , , , jm m m m . 

Step 3: Prove this for 1 2 3 1, , , , ,j jm m m m m  . 

Proof. 

Step 1: Since we are given that  gcd , 1i jm m   so  1 2gcd , 1m m  . 

By Proposition (5.5): 

     m n m n      provided  gcd , 1m n   

We have  

     1 2 1 2m m m m      

Step 2:  
Assume that  

       1 2 1 2j jm m m m m m             (*) 

Provided  gcd , 1i jm m   where i j . 

Step 3: 
We are required to prove that  
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         1 2 1 1 2 1j j j jm m m m m m m m                

Consider the left-hand-side of this: 

   1 2 1 1 2 1j j j jm m m m m m m m  
              (�) 

In order to split the right-hand-side we need to ensure that  

 1 2 1gcd , 1j jm m m m 
        

We are given that  

       1 1 2 1 3 1 1gcd , gcd , gcd , gcd , 1j j j j jm m m m m m m m         

By the result of question 15(ii) of Exercises 1.3: 

       1 2 1 2gcd , gcd , gcd , 1 gcd , 1k ka n a n a n a n n n             

We have  1 2 1gcd , 1j jm m m m 
       .  

Now we are in a position to apply Proposition (5.5) to (�): 

   
   
       

1 2 1 1 2 1

1 2 1

1 2 1

By (*)

j j j j

j j

j j

m m m m m m m m

m m m m

m m m m

 

 
   

 





           
       

    

 






 

By mathematical induction we have our result;  

     1 1k km m m m        . 
■ 

 
22. We need to prove the following: 

If 1 2 3
1 2 3

rk k k k
rn p p p p      then  

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Proof. 
By Proposition (5.8) we have 

       1 1 2 2 3 31 1 1 1
1 1 2 2 3 3

r rk k k k k k k k
r rn p p p p p p p p          

Taking out factors gives 
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1 1 2 2 3 3

1 2 3

1 2 3

1 1 1 1
1 1 2 2 3 3

1 1 1 1
1 1 2 2 3 3

1 2 3
1 2 3

1 1 1 1

1 1 1 11 1 1 1

r r

r

r

k k k k k k k k
r r

k k k k
r r

k k k k
r

rn

n p p p p p p p p

p p p p p p p p

p p p p
p p p p

    

   



    
    

                                         




 
1

1 2 3

1Because 

1 1 1 11 1 1 1

m
m

r

p
p

n
p p p p


              

                                              


 

This completes our proof. 
■ 

23. We are required to prove that if  gcd , 2m n   then  

     2m n m n      . 

Proof. 

We are given that  gcd , 2m n   so there are integers x and y such that 

2x m  and 2y n . 

Then  gcd , 1x y  . Why? 

Because 
2
mx   and 

2
ny   so by Proposition (1.5) of chapter 1: 

 gcd ,a b g  implies gcd , 1a b
g g
      

 

We have  gcd , gcd , 1
2 2
m nx y
      

. 

Since  gcd , 1x y   we can apply the multiplicative property of the Euler totient 

function  . Therefore, we have 

     22 2 2m n x y xy      . 

Let the primes of x which are distinct from 2 be 1 2, , , rp p p  and the primes of 

y distinct from 2 be 1 2, , , tq q q .  

By formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Applying this formula to    22mn xy   gives 

 2 2

1 2 1

1 2 1

1 1 1 1 1 12 2 1 1 1 1 1 1
2

1 1 1 12 1 1 1 1 1

r t

r

xy xy
p p p q q

xy
p p p q


                                                                      

                                            

 

   1 �
tq
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Applying formula (5.9) to    2 m n   gives  

       

1 2 1

1 2

2 2 2 2
1 1 1 1 1 1 12 2 1 1 1 1 2 1 1 1
2 2

1 1 12 1 1 1

r t

r

m n x y

x y
p p p q q

x y
p p p

     
                                                                            

                      

 



   

1

1 2 1
2

1 11 1

1 1 1 1 12 1 1 1 1 1

2 By �

t

r t

q q

xy
p p p q q

xy

                           
                                                          

    



 

 

Hence we have        22 2mn xy m n     which is our required result. 
■ 
 

24. We need to prove    1 12 2 1n nm     given that  12 2 1n nm    where 2 1n   

is prime (Mersenne prime). 
Proof. 
Since we are given that 2 1n   is prime and as 2n   so this number is an odd 
prime. The only prime factor of 12n  is 2. Therefore 

 1gcd 2 , 2 1 1n n   . 

We apply the multiplicative property of   on m: 

    
 

 

 

 
 

 

2

1

1

2 1 2 2 1 1
by question 4  because 2 1 is prime

2

1 1

1 1

2 2 1

2 2 1

2 2 2
2 2 2 2
2 2 1

n n
n

n n

n n

n n

n n

n n

m 

 






    




 

 

 

  

  
  
 

 

 

We have our required result. 
■ 

 

25. (i) We are asked to prove      
 

m n g
m n

g

 



 

  . 

Proof. 

Let  gcd ,m n g .  

Case I If m n  then 2m n n   then by the result of question 7: 

   1m mn n n   



Complete Solutions 5.1       Page 14 of 19 
 

We have      2 2 1n n n n n    . Also  gcd ,g n n n   so evaluating the 

right-hand-side of the given result: 

   
 

   n nm n g

g

  


 


 
n

n


 n n  

Hence, we have our result if m n . 
Case II  
If m n then m and n will have some different primes in their decomposition.  

Let    1 2 1 2
1 2 1 2

r le e e a a a
r lm p p p q q q    and    1 2 1 2

1 2 1 2
jr

bf f f b b
r jn p p p s s s    be 

the prime decompositions of m and n and 0je   and 0jf  .  

By Proposition (2.21) of Chapter 2 the gcd is given by: 

       1 1 2 2min , min , min ,

1 2gcd , k ke f e f e f

km n p p p     

Therefore, we have  
     1 1 2 2min , min , min ,

1 2
r re f e f e f

rg p p p    . 

By formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

We have  
1 2

1 1 11 1 1
r

g g
p p p


                             

  which implies  

 
1 2

1 1 11 1 1
r

g
g p p p

                              
   (�) 

Similarly, by this formula (5.9): 

 
1 2 1 2

1 1 1 1 1 11 1 1 1 1 1
r l

m m
p p p q q q


                                                                   

   

 
1 2 1 2

1 1 1 1 1 11 1 1 1 1 1
r j

n n
p p p s s s


                                                                 

   

 
1 1 2 1

1 1 1 1 1 1 11 1 1 1 1 1 1
r l j

mn mn
p p q q q s s


                                                                                                        

    (*) 

Evaluating 
   
 /

m n

g g

 



 gives 
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1

11

/

m
pm n

g g

 


      


11
rp

     


1 1 1

1

1 1 1 1 1 11 1 1 1 1 1

11

l r j

n
q q p p s s

p

                                                                     
     

  

2

11
p

     
11
rp

     


 by �

1 1 1

1 1 1 1 1 11 1 1 1 1 1
r l j

mn
p p q q s s

                                                                   



  

 

The last line is identical to (*). Therefore, we have 

     
 

   
 /

m n m n g
mn

g g g

   


 
  

  . 

This completes our proof, 
■ 

(ii) We need to prove that Euler’s totient function is multiplicative. 
Proof. 
Substituting 1g   into part (i) gives us our required result: 

     m n m n      provided  gcd , 1m n  . 

■ 
[Here is another proof of this result: 
Consider the array of positive integers: 

     
  columns

1 2
1 2

 rows

1 1 1 2 1
n

n
n n n n n

m

m n m n m n mn

          




   




 

There are  n  columns which are relatively prime to n. In each of these columns 

there are only  m  elements which are relatively prime to m. The number of 

elements in the array which are relatively prime to m n  is  m n  . Each of these 

numbers are relatively prime to m or n. From above we have there are    m n   

of these numbers. Therefore      m n m n     .] 
■ 

 

26. We need to prove          , gcd ,lcm a b a b a b       because we 

are given that  , ,a b lcm a b     . 

Proof. 

Let     gcd , , gcd ,g lcm a b a b  . Then by the definition of gcd we have 
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      gcd , , gcd , gcd ,g lcm a b a b a b g     say. 

By Proposition (2.22): 

 gcd , ,a b a b a b       

We have    , gcd ,lcm a b a b a b   . Therefore 

      , gcd ,lcm a b a b a b       (*) 

Re-arranging the result of the last question part (i): 

     
 

m n g
m n

g

 



 

   

We have  

       m n g
m n

g
 

 


    

Applying this with  ,m lcm a b  and  gcd ,n a b  gives 

            

   

   

, gcd ,
, gcd ,

By (*)

lcm a b a b g
lcm a b a b

g
a b g

g
a b

 
 

 

 


 

     
 

 

This completes our proof. 
■ 

 
27. (i) We are asked to prove  

k

k

d p

d p  .  

Proof. 
The divisors of kp  are 1, 2 1, , , ,k kp p p p . We have 

           
       
       
 

 

2 1

2 1 2 1

2 1

2 1

1  by sum of geometric series
1

1

1 1
1 1 1 1 1 Factorizing
1 1 1

11 1

k

k

k k

d p

k k k k

k k

k k

p
p

d p p p p

p p p p p p p
p p p p p p p
p p p p

p

     

  

 

 




     

         
             

         

  

 







 1 1
1

kp p
p

  


1
1

kp
p



Multiplying numerator and
denominator by 1

1 1k kp p

              
   

 

This completes our proof. 
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■ 

(ii) Similarly, we prove      
'

'
k m k m

k m

d p q d p d q

d d d p q      . 

Proof. 
It is longer proof than part (i) but the procedure is very similar. Since the given 

primes p and q are distinct so  gcd , 1p q  . We have 

        

     
     

Divisor 1 
is included in the 
first term on the right

by part (i) by part (i)hand side.
2

2 2 2 2

1 1 1
k m k md p q d p d q

k

k

d d d

pq p q p q
pq p q p q

   

  
  

   
           
         

   
   

  
 






     
              

           

           

 
        

1

2

2

By multiplicative property of 
2 2 2 2

2

2

By 

1 1 1

1 1 1 1 1

m m k m

k m k

k

m m k m

k m

q q q

pq p q p q
p q p q p q p q

p q p q p q

p q p q p q
p q p q p q p





  
      

     

     
   

 

   
                 

   

   
                   

  

 





  


   

        

        
          

       

       

2 2 2 2

1 2 1 1

2

Factorizing
2 2

1 2

1

1 1 1 1

(*)

k

k

m m m m k m m

k m k

k

m m k

q

p q q p q q p q q

p q q p q q p q q

p q q p p p

q q p p p

q q p p p

  

  

   

  

  

  





      

      
                      

       

       


  






 



 

From part (i) we have  

     2 1k kp p p p        

Substituting this into (*) yields 
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2 1

2 1

Factorizing out 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

k m

k m k

d p q

k m m k

k m k m m

k m k

q

d p q q p

q q p q q p

p q p q q q q q

p q p q

 







                      

               
                               

                      








 

 

2 11

Using the sum of
11 1 1 1 1 geometric series on the 
1

last brackets.
Multiplying the

1 1 1 1 1

m

m
k m k

k m k m

q q q

qp q p q
q

p q p q

      

 
                                       

                      




 numerator
and denominator by 1.

1 1 1 1 Expandingk m k m k m

k m

p q p q p q
p q

 
 
   
            



 

By Part (i) we have  

     
'

'
k m k m

k m

d p q d p d q

d p q d d       

Hence, we have our required result. 
■ 

(iii) To prove  
d n

d n   we write n in prime decomposition form and then apply proof 

by induction. 
Proof. 

Let 1 2
1 2

rk k k
rn p p p     where p are distinct primes. Then by part (i) we have  

  1

1
1

1
k

k

d p

d p   

We assume the result is true for r m : 

  1 2

1 2
1 2

1 2
m

k k km
m

k k k
m

d p p p

d p p p
  

   


   (*) 

Required to prove the result for 1r m  : 

  11 2

11 2
1 2 1

1 2 1
mm

kk k k mm
m m

kk k k
m m

d p p p p

d p p p p 





   

    


 . 

We can write  

 1 11 2 1 2
1 2 1 1 2 1

m mm mk kk k k k k k
m m m mp p p p p p p p 

           . 

Since the p’s are distinct primes so  11 2
1 2 1gcd , 1mm kk k k

m mp p p p 
    . By part (ii) 

we have  



Complete Solutions 5.1       Page 19 of 19 
 

 
 

 
 

 

 
111 2 1 2

11 2 1 1 2

11 2
1 2 1

by part (i)by (*)

kkk k k k k k mmm m
mm m m

mm

d pd p p p p d p p p

kk k k
m m

d d d

p p p p n

  






      



 

     

  
 

 
 

This completes our proof. 
■ 

 
 

 


