
Complete Solutions 5.2       Page 1 of 15 
 

Complete Solutions to Exercise 5.2 
 

1. Evaluating  mod 8j jar x  with 3a   and 1 2 3 41, 3, 5, 7r r r r    : 

   3 1 3 mod 8  

   3 3 9 1 mod 8   

    3 5 15 7 mod 8   

   3 7 21 5 mod 8   

Note that  modj kar r n  with 1 2 2 1 3 4, ,ar r ar r ar r    and 4 3ar r . 

 
2. Two different reduced residue system modulo 8:  

 71, 3, 5  and  1, 11, 13, 17   

 
3. We need to find the last digit of 20147 . This means we need to work with 

modulo 10 because we want to find the last digit. We need to determine x in 

 20147 mod 10x  where x is the least non-negative residue modulo n. 

We use Euler’s Theorem (5.14): 
   1 modna n   

With 10n  . We have  10 4   so applying this theorem with 

10, 7n a   gives 
   10 47 7 1 mod 10     (*) 

Writing the index 2014 as a multiple of 4 and remainder we have 

 2014 503 4 2   . 

Rewriting the index 2014 of 7 in  20147 mod 10x  gives 

 

   
503 4 22014

5034 2 2

1

7 7

7 7 7 49 9 mod 10

 





     

The last digit of 20147  is 9. 
 

4. We need to find the last two digits of 100013 . Since we are interested in the last 
two digits so we work with modulo 100. We are required to find  
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 100013 mod 100x . 

where x is the least non-negative residue modulo 100. 
In order to use Euler’s Theorem (5.14): 

   1 modna n   

with 100n   we must find  100 . The prime decomposition of 100 is 
2 2100 2 5  . 

We use formula (5.9) to find  100 : 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Hence  

  1 1100 100 1 1 40
2 5


               

.     

Applying Euler’s Theorem with  100 40  , 100n   and 13a   gives 

 4013 1 mod 100   (�) 

Writing the index 1000 as a multiple of 40 plus any remainder: 
1000 40 25  . 

Therefore  

     
1000 40 25

2540 25

13 13

13 1 1 01 mod 100 By �


       

 

Hence the last two digits of 100013  are 01. 
 

5. We are required to find the least non-negative residue x in  

 176711 mod 301x . 

In order to use Euler’s Theorem we need to first find  301 .  

The prime factorization of 301 is 
301 7 43   

Using formula (5.9) to find  301 : 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

with 1 2301, 7  and  43n p p    gives 

  1 1301 301 1 1 252
7 43


               

. 
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Now we are in a position to use Euler’s Theorem (5.14): 
   1 modna n   

With 11, 301a n  : 
   301 25211 11 1 mod 301     (�) 

Recall we need to find the least non-negative residue x in  176711 mod 301x . 

Writing the index 1767 as a multiple of 252 and any remainder: 

 1767 7 252 3   . 

We have 
 

   
7 252 31767

752 3 3

1

11 11

11 11 11 1331 127 mod 301

 





     

Hence  176711 127 mod 301 . 

 

6. To find the last three digits of 1 000 00027  we need to work with modulo 
1000. We need to find the least non-negative residue x in the following  

 1 000 00027 mod 1000x . 

We use Euler’s Theorem but to use this we need to find  1000 . Using the 

result of question 7 Exercises 5.1: 

   1m mn n n   

we have  

     3 21000 10 10 10 100 4 400        . 

Using Euler’s Theorem: 
   1 modna n   

With  1000 400  , 27a   and 1000n   gives 

 40027 1 mod 1000   (**) 

Writing the index 1 000 000 as a multiple of 400 and any remainder; 
1 000 000 2500 400  . 

Therefore  

   25001 000 000 2500 400 40027 27 27 1 mod 1000      [By (**)] 

The last three digits of 1 000 00027  are 001. 
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7. In each case we use Euler’s Theorem to find the multiplicative inverse. 

(a) We are required to solve  7 33 mod 50x  . One way to solve this is to 

find the inverse of 7 modulo 50 for which we can use Euler’s Theorem: 
   1 modna n   

Recall we can only use this theorem if the  gcd , 1a n  . 

Since  gcd 7, 50 1  so we can use this result. 

First we need to find  50 . The prime factorization of 50 is  
250 2 5   

By applying (5.9):  

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

to find  50  gives 

  1 150 50 1 1 20
2 5


               

. 

Using Euler’s Theorem with 7, 50a n   we have 
   50 207 7 1 mod 50   . 

We can rewrite the index 20 as 19+1: 

   20 197 7 7 1 mod 50  . 

Hence  197 mod 50  is the inverse of  7 mod 50 . We need to find 

 197 mod 50 . Evaluating a simpler power of 7; 

 27 49 1 mod 50    (�) 

Using this  27 1 mod 50  to evaluate  197 mod 50 : 

     
 
  9 92 9 119 2

By �

7 7 7 7 1 7 7 43 mod 50       . 

Therefore  43 mod 50  is the inverse of  7 mod 50 . Multiplying both sides of 

the given equation  7 33 mod 50x   by 43 gives 

 
1

43 7 43 33 19 mod 50x


    . 

Our solution to  7 33 mod 50x   is  19 mod 50x  . 
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(b) We need to solve the linear congruence  13 51 mod 100x  . Since 

 gcd 13, 100 1  so we can use Euler’s Theorem. In order to use this we need 

to find  100  which we have evaluated many times: 

 100 40  . 

Substituting 13, 100a n   and  100 40   into  

   1 modna n   

gives 

 4013 1 mod 100 .    

What is the inverse of  13 mod 100 ? 

 3913 mod 100  because  

 40 3913 13 13 1 mod 100   . 

We need to find the least non-negative residue of  3913 mod 100 . Evaluating 

some simple powers of 13: 

 2 313 169 68, 13 2197 97 3 mod 100       (*) 

We use the last result  313 3 mod 100  because 3  is a small number to 

find powers of. Remember we have to evaluate  3913 mod 100  so writing this 

index 39 as a multiple of 3: 

      13 1339 3 13 3

By (*)

13 13 13 3 1594323 23 mod 100       . 

The inverse of  13 mod 100  is  23 mod 100 . Multiplying both sides of the 

given equation  13 51 mod 100x   by 23  gives 

 
1

23 13 23 51 1173 73 27 mod 100x


          . 

Therefore, the solution is  27 mod 100x  . 

(c) The given equation is  13 52 mod 100x  . Similarly we have the 

answer  4 mod 100x  . 

(We can solve each of these congruences by solving the equivalent Diophantine 
equations.) 
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8. How do we solve  15 mod 32jx b ? 

We need to find the inverse of  15 mod 32 . We can use Euler’s Theorem to 

find this inverse. To apply Euler’s Theorem, we need to find  32 : 

  132 32 1 16
2


       

. 

By Euler’s Theorem with 15, 32a n   and  32 16   we have 
   32 1615 15 1 mod 32   . 

Therefore, the inverse of  15 mod 32  is  1515 mod 32  because  

   16 1515 15 15 1 mod 32  . 

We need to find  1515 mod 32 . Finding some simple powers of 15: 

 215 225 1 mod 32    (*) 

Therefore 
      72 7 115 2 7

By (*)

15 15 15 15 1 15 15 mod 32       . 

Multiplying both sides of the  15 mod 32jx b  by 15 gives 

 
1

15 15 15 mod 32jx b


   . 

Therefore  

 15 mod 32j jx b    (**)    

Substituting 5, 7, 9, 11 and  13jb   into (**) yields 

 1 15 5 11 mod 32x     

 2 15 7 105 9 mod 32x      

 3 15 9 135 7 mod 32x      

 4 15 11 165 5 mod 32x      

 5 15 13 195 3 mod 32x      

Note that the advantage of finding the inverse of  15 mod 32  is that you can 

solve  15 mod 32j jx b  for different values of bj in one go. 
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9. How do we prove that 99 99n   where there are  n  number of 9’s in

99 99 ? 

Since we are given that  gcd , 10 1n   so we can use Euler’s Theorem. 

Proof. 
Using Euler’s Theorem with 10a   gives 

   10 1 modn n    which implies    10 1 0 modn n   . 

As    10 1 0 modn n    therefore   10 1nn   . What does  10 n  represent? 

1 followed by  n  zeros. We have 
 

   There are There are 
zeros. nines.

10 1 1 00 00 1 99 99n

n n



 

      . 

So   10 1nn    implies 99 99n   where there are  n  9’s. 

■ 
 

10. We need to show that  1
1 mod

n np p na p
   provided p a . 

Proof. 

We are given that p a  so  gcd , 1p a  . Why? 

Because by question 3 of Exercise 2.1 we have 

Let p be prime and it does not divide a then  gcd , 1p a  . 

We also have 

 gcd , 1np a  .       

Why? 

Because  gcd , 1p a   and the only divisors of np  are 1 and 2, , , np p p . 

The integer a does not have prime p in its prime factorization. 

As we have  gcd , 1np a   therefore we can apply Euler’s Theorem (5.14): 

   1 modma m   

With nm p . By Proposition (5.4) of the last section: 

  1k k kp p p    

We have   1n n np p p   . Substituting this into Euler’s Theorem we have 

   1
1 mod

n n np p p na a p
   . 
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We have our required result. 
■ 

 

11. The given statement     1 modna n    is false. Consider the following: 

Let 5n   and 3a   then  gcd 3, 5 1  and  
   5 43 3 1 mod 5   . 

However 
      5 4 23 3 3 9 4 mod 5      . 

 
12. (a) Proof.  

Since we are given that  gcd , 1a n   so  1 moda n  exists. By Euler’s 

Theorem we have  
   

    1

1 mod

1 mod By rules of indices

n

n

a n

a a n



 


    

 

By the definition of inverse of a modulo n we have  
   11 modna a n   . 

This completes our proof. 
■ 

(b) Proof. 

Substitute    1 modnx ba n   into the given equation: 
       1 1 1 modn n nax aba a b a b n       . 

 By Euler’s Theorem we have 
   1 modna n  . 

 Putting this into the right-hand term in the above yields 
     1 modna b b b n   . 

Since    1 modnx ba n   satisfies  modax b n  so it is the solution. This is 

our required result. 
■ 

 
13. (i) Using the multiplicative property of   and   1p p    we have 

         3 23 3 23 2 22 44n p q             . 
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(ii) The factorization of 244 2 11  . Therefore 

   2gcd 3, 44 gcd 3, 2 11 1   . 

We need to find   13 mod n . This means we have to determine 

 13 mod 44 . 

Since  gcd 3, 44 1  so by Euler’s theorem we have 
   443 1 mod 44  . 

Now      44 4 11 2 10 20       . Substituting this into the above 

yields 

     20 193 1 mod 44 3 3 1 mod 44   . 

Hence the inverse of 3 modulo 44 is given by 

 1 193 3 mod44     (*) 

Evaluating powers of 3 gives 

 3 4, 33 27 81 7 mod 44   . 

Using the last power to evaluate (*) gives 

     4 419 4 3 2 23 3 3 7 27 49 27 5 27 675 15 mod 44            

Putting this into (*) yields  1 193 3 15 mod 44   . 

 

14. We need to prove      1 modn mm n mn    given that  gcd , 1m n  .  

Proof. 

Since we are given that  gcd , 1m n   so by Euler’s Theorem we have 
   1 modnm n   

   1 modmn m   

We have two simultaneous congruences so we can use the Chinese Remainder 
Theorem: 

(3.23)  1 1 1 2 2 2 3 3 3 r r rx a N x a N x a N x a N x      

Given    1 1 2 2mod , modx a n x a n   the solution of this is 

 1 1 1 2 2 2 1 2modx a N x a N x n n   (*) 

We use this result with 1x  ,  
1

na m ,  
2

ma n , 1n n  and 2n m . 

Substituting these into (*) gives 
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     1 1 2 2 1 modn mm N x n N x mn     (**) 

Remember 1
n mN m

n
   and similarly 2N n . The jx ’s are the 

multiplicative inverse of jN : 

 1 1 1 1 modN x mx n    implies 1 1mx kn   

 2 2 2 1 modN x nx m   implies 2 1nx lm   

Substituting these, 1 1 1N x kn   and 2 2 1N x lm   into (**) gives 
             1 1 2 2 1 1 1 modn m n mm N x n N x m kn n lm mn          

Expanding out gives 
               

  
 

  
 

   

     
0 mod 0 mod

1 1

1 mod

n m n n m m

n m n m

mn mn
n m

m kn n lm m kn m n lm n

k m n l n m m n

m n mn

     

   

 
 

      

   

  

 
 

Hence we have our required result  
     1 modn mm n mn    

■ 
 

15. We need to prove  1 1 1 modq pp q pq   . 

Proof. 

Since p and q are distinct primes so  gcd , 1p q  . Using the result of the 

previous question;  
     1 modn mm n mn   . 

with m p  and n q  we have: 
     1 modq pp q pq     (�) 

As p and q are prime so using Proposition (5.2): 

If r is prime then   1r r   . 

to find  p  and  q  gives 

  1p p    and   1q q   . 

Substituting this into (�) yields 
     1 1 1 modq p q pp q p q pq       . 

This completes our proof. 



Complete Solutions 5.2       Page 11 of 15 
 

■ 
 

16. Since  gcd , 16 1a   so we can use Euler’s Theorem: 

   1 modma m   

With 16m  : 
   16 1 mod 16a    (*) 

What is  16  equal to? 

We worked this out in section A; 

   4 4 316 2 2 2 16 8 8       . 

Substituting this into (*) gives 
   16 8 1 mod 16a a   . 

We need to find the inverse of 3a  modulo 16. Rewriting the index 8 as 5 3  
we have 

   8 3 5 3 5 1 mod 16a a a a   .    

Hence the inverse of 3a  modulo 16 is  5 mod 16a . 

 
17. We use proof by contradiction.  
Proof.  

Let   1 2 3, , , ,j nr r r r r   then rj has an inverse because it is in the 

reduced residue system. Suppose  1 modj kr r n   where rk is not in the 

reduced residue system. By the definition of the reduced residue system we 

have  gcd , 1kr n g  . We have 

   1 11 1 modj k k jr r r r n    . 

By Proposition (3.16) of chapter 3: 

 modax b n  has g solutions provided g b  where  gcd ,g a n . 

We can only have    1 1 modk jr r n   provided 1g  which is impossible 

because from above we have 1g  . 
■ 
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18. We are required to prove that 

   1 2 3 1  or  1 modnr r r r n       where   1 2 3, , , , nr r r r  is a 

reduced residue system modulo n. 
Proof. 

We are given that   1 2 3, , , , nr r r r  is a reduced residue system modulo n,  

so each of these numbers are relatively prime to n. Why? 
Because by the Definition (5.11) of the reduced residue system we have 

 gcd , 1ir n   for all  1, 2, 3, ,i n  . 

Each ri must have an inverse modulo n because it is relatively prime to n. 
The inverse of ir  must belong to the reduced residue system by 

 gcd , 1ir n  . Hence the inverse of ir  modulo n must be an element in  

  1 2 3, , , , nr r r r . 

Let  1 2 3 nx r r r r     . Note that in this list of reduced residues we 

have both ir  and in r . Why? 

We consider two cases: 1) ir  has a self inverse 2) ir  does not have self 

inverse. 
If ir  has a self inverse then multiply this by in r  and we have 

     2 1 modi i i i ir n r r r r n     . 

If ir  does not have self inverse then there is another reduced residue jr  where 

i j  which is its inverse. This means you can pair up ir  with its inverse jr  to 

get  

 1 modi jr r n  .     

Therefore the product of all the reduced residues 

     1 2 3 1 mod
k

n
r r r r n      . 

where k is the number of self inverses divided by 2. 
 This completes our proof. 

■ 
 (ii) Wilson’s Theorem (4.4) is the following: 

If p is prime, then    1 ! 1 modp p   . 

 Proof. 
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 We use the result of part (i). Since p is prime so our reduced residues system 

is given by  1, 2, 3, , 1p  . By part (i) we have  

     1 2 3 1 1 mod
k

p p       . 

where k is the number of self inverses divided by 2. Modulo p has two residues 
which have self-inverses and these are 1 and 1p  . Why? 
By Lemma (4.3): 

   2 1 mod 1 modx p x p     

Therefore 1k   which gives  

       1
1 ! 1 2 3 1 1 1 modp p p           .  

 This completes our proof. 
■ 

 

19. We need to find the last three digits of 
201920192019 . For the last three 

digits we need to work with modulo 1000. We need to find the least positive 

residue x which satisfies  201920192019 mod 1000x . Since the 

 gcd 2019, 1000 1  so we can apply Euler’s Theorem. First we note that 

 1000 400  . Therefore   

 4002019 1 mod 1000    (*) 

We need to write the index 20192019  as a multiple of 400 and any remainder. 
Again we can use Euler’s Theorem to find this. However we have 

 2019 19 mod 400 .  

Therefore we have to find  

 2019 20192019 19 mod 400y    (�) 

and  400 160   so 

 16019 1 mod 400    (**) 

Applying the division algorithm to index 2019 and 160 gives 

 2019 12 160 99   .   

Using this calculation in  201919 mod 400y  gives 

      1212 160 992019 160 99 99 99

By (**)

19 19 19 19 1 19 19 mod 400y        . 

Modulo 400 is too large to work with. We factorize 400: 
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400 16 25  .  

To find the above  9919 mod 400y  we use moduli 16 and 25: 

   99 99
1 219 mod 16 , 19 mod 25y y  . 

Evaluating the first of these  99
119 mod 16y :  

   
 
  

4

244 24 399 99 4 3 3
1

By 3 1 mod 16

19 3 3 3 3 3 27 11 mod 16y  



        . 

Now evaluating the other residue  99
219 mod 25y . Since  gcd 19, 25 1  so 

we can apply Euler’s Theorem to this by first evaluating   225 5 5 20    . 

Writing the index 99 as a multiple of 20 and any remainder gives 

 99 5 20 1   .  

 By Euler’s theorem we have 
   

     

520 5 199 20 1
2

5 1

11

19 19 19 19
1 19

19 6 4 mod 25 Because 6 4 24 1 mod 25

y   





   
 

           

 

Summarizing these results  9919 11 mod 16  and  9919 4 mod 25 . Applying 

the Chinese Remainder Theorem to these two results gives 

   
       

99
1 1 1 2 2 2

1 2

19
4 16 11 25 mod 25 16 �
a N x a N x

x x
     
      

 

Solving  

   
   

1 1

2 2

16 1 mod 25 11 mod 25

25 1 mod 11 9 mod 16

x x

x x

  
  

 

Substituting these into  �  yields  

     9919 4 16 11 11 25 9 379 mod 400       . 

Putting this into (�) gives 

 2019 2019 992019 19 19 379 mod 400y     . 

Therefore, we have 

 20192019 379 400 379 3792019 2019 2019 19 mod 1000kx      

It is still pretty difficult to evaluate  20192019 3792019 19 mod 1000x    because 

of the large index. However this is much easier than dealing with the index 
20192019  which has 6674 digits. 
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Again modulo 1000 is too large to work with so we again use the Chinese 
Remainder Theorem by factorizing 1000 first; 1000 8 125  . Both these 
moduli, 8 and 125, are much easier to work with. We need to evaluate 

   379 379
1 219 mod 8 , 19 mod 125n n  . 

Applying Euler’s Theorem with  8 4   so  4 419 3 1 mod 8  . Hence 

 379 4 3 3
1 19 3 3 3 27 3 mod 8kn        where k is an integer. 

Now evaluating n2 we have  125 125 25 100     so  10019 1 mod 125 . 

Therefore 

 379 79
2 19 19 mod 125n    .   

We still have a reasonable large index and modulo but let us preserve with 

this. By using a calculator we find that  619 6 mod 125 . Using this in the 

above calculation gives 
 

       
6 13 179

2
136 13 12 2

19 19

19 19 6 19 6 6 19 31 114 54 mod 125

n   

       
 

Summarizing these two calculations we have 

 37919 3 mod 8  and  37919 54 mod 125 . 

Now using the Chinese Remainder Theorem we have 

   
       

379
1 1 1 2 2 2

1 2

19
3 125 54 8 mod 125 8 ��
a N x a N x

x x
     
      

 

To find x1 and x2 we need to solve the following: 

   1 1125 1 mod 8 5 mod 8x x    

   2 28 1 mod 125 47 mod 125x x     

Substituting these into (��) gives 

     37919 3 125 5 54 8 47 179 mod 1000       . 

Hence, we have  20192019 3792019 19 179 mod 1000x    . The last three digits 

of 
201920192019  is 179. 


