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Complete Solutions to Supplementary 8

1. We are asked to show that the product of 4 consecutive integers plus 1 is a
square number.
Proof.
Let a—1,a,a+1 and a+ 2 be the four consecutive integers. The product is
n = a(a — 1)(@ —|—1)(a —|—2)

= a(a2 —1>(a -|—2)

= a(a3 +2a° —a—2> =a' +2d" —a*—2a
Therefore, the integer n + 1 is given by

n+l=a"+2a"—a*—2a+1

Since we have a quartic (degree 4) we want to factorize this into a repeated

quadratic so that it is a square number:
. 2
a' +2a° —a’ —2a+1:(a2 +ka+m)
We need to find the numerical values of k£ and m. By expanding the quadratic we
have
2
(a2 -I—ka-l—m) :(a2 +k:a+m)(a2 -I—ka-l—m)
=a' +ka’ + ma® + ka® + k*a® + kam + ma® + kam +m’
=a' +2ka’ + (2m + kZ)CLZ + 2kam + m®
=a'+2d° —a* —2a+1 [From above
Equating coefficients of @’ in the last two lines gives k& = 1.
Equating coefficients of o’ gives 2m + k> =2m +1=-1 = m=—1.
Our quadratic is a* +a — 1, that is
. 2
n+l=a"+2d —a —2(1—#12(@2 ~|—a—1>

Hence n +1 is a square number.

m

2. (i) We are required to prove that if ged (x, y) = ¢ then gcd(xm, ym) =g".
Proof.

We first show that ¢™ is the ged of 2™ and y™. How?

By mathematical induction.

For the case m =1 the result is true because we are given

ged(z, y)=g' =g
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Assume the result is true for m = k, that is
gcd(xk, yk) =g

Required to prove gcd(xk“, y”l) = ¢,

We have ¢ ‘ z and by the above assumption g¢" ‘ z" . By Theorem (1.2)(c):

Ifa‘b and c‘d then (axc)‘(bxd).

k+1 k41

We have (gk X g)

(il?k X x) implies ¢ T

k+1 1 1

Similarly ¢*"' | y*"'. Thus ¢""' is a common divisor of """ and 3*"' so by

mathematical induction we have ¢” is a common divisor of z" and y".
Let ¢ be the ged of z™ and y™. We need to prove that ¢ = ¢g".
There are integers a and b such that
ca=1z" and cb=y" (*)
Since ¢" is a common divisor so ¢" | ¢ which implies ¢"z = ¢ for some integer 2.

Substituting this
g"z=c ()
into (*) yields

g"za =2z" and ¢"zb=y"

5] : [ﬂ] —1. Why?

g g

Thus we have za = [E] and zb =
g g

Q] . The ged

Because gcd(x, y) = ¢ and by Proposition (1.5):
If gcd(x, y) = g then gcd[z, 2] =1.
g9 g

By Question 15(iii) of Exercises 1(c);

If gcd(a, b):1 then gcd(a", b”)zl.

X

g

Therefore ged

] , [2] = 1. Substituting za = [E] and zb = [Q] gives
g g g

gcd(za, zb) =1 which implies that z =1.

Substituting this z =1 into (}) gives us our result ¢ = ¢g".

This completes our proof.
[

(ii) We are asked to prove that if a xb =n* and ged (a, b) =1 then both ¢ and
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b are squares.
Proof
We have

a=ax gcd(a, b)

—_—
=1

= gcd(aQ, a ><b)

= gcd(aQ, n2) = [gcd(a, n)r
t (1)

Using axb=n? By par

By Proposition (1.11) m x ged (a, b) = ged (ma, mb)}

—_—

Similarly we have

b=bxged(a, b)=ged(bxa, b')=ged(n’, ¥) = |ged(n, b)r

y part (i)

Thus, both a and b are square numbers. This completes our proof.

3. We are asked to prove if any prime p > 5 can be written as a® + 5b° then
p=1or 9(mod 20) .
Proof.

We need to show that there is a solution a and b such that
a’ +5b> = O(mod p) = o’ = -5b’ (mod p)
provided p =1 or 9(mod 20) . This means we need find the primes p for which

—5b” is a quadratic residue. Evaluating the Legendre symbol
= |— | X _— =
p p p
——

=1 because b* is QR
By the result of question 21 of Supplementary 7:

p

—5 is a QR of p provided p =1, 3, 7,9(m0d 20).
This means
a’ +5b° = O(mod p) where p could be p =1, 3, 7,9(mod 20)
Testing each of these primes p =1, 3, 7,9(m0d 20) to check
a’ +5b> = O(mod p). This p =1, 3, 7,9(m0d 20) means the prime pis 1, 3, 7 or

9 more than a multiple of 20 so we can write this as
p =20k +1, 20k, + 3, 20k, +7, 20k, +9

where k. for j=1,2, 3,4 are positive integers. First consider p =20k +1:
J
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p =20k +1=0a’+5" = 54k ") =0’ —1=0(mod 5)
From the last result we have a° = l(mod 5) and 1 is a quadratic residue of 5 so
p =20k, +1 can be written as a® +5b°.
Similarly we have for p =20k, + 3:
p =20k +3=a’+50 = 54k, —b*)=a’—3=0(mod 5)
From the last result we have a* = 3(m0d 5) but evaluating the Legendre

symbol

[g] _ [g] _ [2] =1 |Because 3= 3(mod 8|

Hence 3 is a quadratic non - residue of 5 so p = 20k, + 3 cannot be written as
a’ +5b°.
Also for p =20k, +7:
p=20k +7= o’ +5b° = 5(4k3 —b2) =a’ —7EO(mod 5)
From the last result we have a* =7 (mod 5) but evaluating the Legendre

symbol

[g] - [g] =1 [Because 5 = —3(mod 8|

Hence 7 is a quadratic non - residue of 5 so p =20k, +7 cannot be written as
a’ +5b° .
Investigating the last case p =20k, +9:
p =20k +9= a’ +5b° = 5(4k4 —b2>:a2 —-9= O(mod 5)
Since 9 = 3” so it is a quadratic residue of modulo 5 which implies that

p =20k, +9 can be written as a’ +5b°.

This completes our proof that p =1 or 9(mod 20) .

. We need to prove that if n = 7(mod 8) then n = 2° +¢° + 2>. How?

Use proof by contradiction.
Proof.

Suppose n = z° + y° + 2z*. Then by squaring each residue in modulo 8 we have

a°=0,1or 4(m0d 8). Why?
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Because we have a =0, 1, 2, 3, 4, 5, 6, 7(mod 8) which implies
a> = 0% 12,22, 32, 42, 5%, 62, 7 (mod 8)
=0,1,4,1,0,1, 4, 1(mod 8)
Therefore
n=z*+ 4’ + 2 E{O,lor 4}+{0,1or 4}+{0,1or 4}
=0,1,23,4,5 or G(mod 8)
Thus n }g 7(m0d 8) . This is contradiction because we are given n = 7(mod 8) .

Hence n = 2* + y* + 2°. This completes our proof.

[
. We prove this by using the given hint:
P+24+3 +.. 40 :inz(n—i—l)z
and the following standard result which can be proved by induction:
1
1+2+3+---+n:§n(n+1) (1)
Proof.
We have
1 1 :
2
P +2° +3 4+ =—n2(n+1) = —n(n-l-l)
4 2
2
=[1+2+3+-+n| [By (1)
Hence we have our result.
[

(a) We need to prove that every integer n which satisfies n = 3(m0d 8) can

written as a sum of three non — zero squares.
Proof.
From n = 3(m0d 8) which implies that n is 3 more than a multiple of 8;
n = 8k + 3 where k is an integer. We prove the result by induction.
For k=1 we have our result because
n=(8x1)+3=11=3+1+1’
Assume the result is true for k£ =k, that is (our induction hypothesis):

n:8k—|—3:a2—|—b2—|—0253(mod8) (*)
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We are given that n = 3(m0d 8) which implies that n is an odd integer. To be
able to write this as a sum of three squares we must have the following;:
n=(0dd) +(odd) +(odd) = 3(mod s) (1)
Why?
2 2 2
The only other option is n = (even) + (even) + <0dd) = odd but this gives

n= (2m>2 + <2l)2 + <2s + 1)2

- 2 2 2 — —
=4 (m +1"+s +s) +1= (Oor4) +1:1,5(m0d8)
. - [
This bracket term can only be odd or even Because 4><((’r11(5n)£0<mod 8) or 4><(0dd)£4(mod 8)

In this case n }:Z 3 (mod 8) which contradicts our given statement n = 3(m0d 8)
. Therefore we cannot have

n= (even>2 + (61}671)2 + (odd)2 =odd.
Substituting ¢ =2m +1, b =2l +1 and ¢ = 2s + 1 into (*) yields

2 2 2
8k+3:(2m+1> +(21—|—1) +(23—|—1> = 3(m0d 8)

We need to prove the result for &£+ 1,

8(k+1)+3=2a"+y + 2 (1)
Considering the left — hand side of () we have
8(k+1)+3=8k+3+8

= (2m+1) +(2+1) +(25+1) +8
2
_ (2m N 3>2 N (21 N 1)2 N (23 N 1)2 gm Because (Zm + 3) =d4m’ + 1§m +9
=(2m +1) +8+8m
= (2m + 3)2 + (21 + 1)2 + (28 + 1)2 (mod 8) [Because —8m = O(mod 8)}
Hence, we can write 8<k + 1) + 3 as sum of three squares, so by mathematical

induction we have our result. This completes our proof.

(b) See Example 6. Consider n =105 then 105 = 1(mod 8) but

105 =10" +2° +1*
Hence an example where 105 is sum of three squares but 105 }g 3 (mod 8) .

. We need to disprove that n = a*> +b* has no divisor d of the form

d= S(mod 4). How?

By producing a counter example. Take d =7 = 3(m0d 4) then
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n="T +7" =98 and of course 7| 98.

8. We are asked to prove that the odd prime p can be expressed as the sum of two
squares < p=1or 5(m0d 8) .

Proof.

(:>). Assume p can be written as sum of two squares, that is p = a” 4+ b* say.
We have a* +b° = O(mod p) which implies a® = —b° (mod p). By Proposition
(7.11) of the last chapter:

1 if p=1 (mod 4)
-1 if pE3(mod4).

Let p be an odd prime. Then

p

We have that —1 is a quadratic residue of p provided p =1 (mod 4). Hence
there are integers a and b such that a® +b* = O(mod p) provided

p=1 (mod 4). Recall that this p=1 (mod 4) means that the prime p is one

more than a multiple of 4, that is p = 4m +1 where m is a positive integer.
However m can be odd or even.

If mis odd, 2[ +1 then
p:4m+1:4(2l+1)+1=81+555(m0d8)
If m is even, 2/ then
p:4m—|—1:4(21>—|—1:8Z—|—1El(mod8)
Hence p must satisfy p =1 or 5(m0d 8).

(<:). Now going the other way. We assume p =1 or 5(m0d 8) which means

that p is 1 or 5 more than a multiple of 8, that is
p=8k+lorp=8m+5

where k£ and m are positive integers. We have
p =8k +1=14(2k)+1=1(mod 4) or
p:8m+5:4(2m+1>+151(m0d4)

In either case we have p = 1(m0d 4). By Theorem (8.3):

Every prime p satisfying p = l(mod 4) can be written as the sum of two

squares.
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Thus if p=1or 5(mod 8) then it can written as the sum of two squares.

m
(a) We are asked to prove that if pis an odd prime then there are integers z
and y such that
2 2 _ p—1
z°+1y =—4(mod p| where 0 < z, ygT
Proof.
Rewriting the given equation as z° = —4 — ¢ (mod p) .
Repeat the proof of Lemma (8.11) with the sets Sand T given by
2
-1 —
S =10, 12, 22, .., pT Subsituting = =0,1,2 3, -2~ into 2>
1) 1
T:|402, /R LR, p% ] Substituting y = 0,1, ---, £~ into —4 — ¢
There are p 41 integers in these sets so there must at least one integer which
is in both sets by the Pigeonhole Principle. Hence there are integers x and y
such that z° 4+ 9° = —4(m0d p).
[

(b) We need to find x and y such that

4y = —4(mod 19) where 0 <z, y < (19—1)/2

We look for x and y such that z° = —4 — ¢ (mod 19) .

Using the sets of part (a) we have

S = {02, 12,92, 32 42 52 6%, 72, 82, 92} = {o, 1,4, 9, 16, 25, 36, 49, 64, 81}

= {o, 1,4,9,16,6,17,11, 7, 5} (mod 19)

T:{f4,f4f12,f4f22,f4f32,f4f42,f4f52,f4f62,f4f72,f4f82,—4—92}

{—4, _5, —8 —13,—20,
= {15, 14, 11, 6,18, 9,17, 4, 8,10} (mod 19)

— 99, — 40, — 53, — 68, —85}

Which integers are common between the sets S and T?
4,6,9,11 and 17

The integer 4 is the third element in set S and third from last in T so we have

2 =47 (mod 19)

We also have the solution 7% = —4 — 2? (mod 19) .
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Similarly we have the other 3 solutions:
5" = —4 - 3" (mod 19)
F=-4-5 (mod 19) [By symmetry]
The last solution 17 is
6" = —4 — 4* (mod 19)

The five solutions of z° + y* = —4(mod 19) are

{x:2,y:7},{x:7,y:2},{x:3,yzS},{x:5,y:3},{x:6,y:6}

We need to check that r =1 766 319 049 + 226 153 980\/5 produces a solution
to #° —61y> = 1. Substituting z = 1766319049, y = 226153980 into
r’ — 61y’ =1 gives

2’ — 61y* = 1766319049° — (61 X 2261539802) =1

(My calculator showed that this was zero but checking this on Maple gave the

above answer).

We are asked to prove that the quadratic Diophantine equation z> — Ny* = —1
has no solutions if N = 3(m0d 4).

Proof.
Suppose there is a solution z and y such that z°> — Ny* = —1. We have

=Ny —1= —1(mod N)
This z° = —1(m0d N ) implies that —1 is a quadratic residue of N where

N = 3(m0d 4). This N = 3(m0d 4) implies that N is 3 more than a multiple of

4, that is N = 4k + 3 where £ is an integer. By Proposition (7.24);
—1 l(nfl)
= (1)
-

Substituting N = 4k + 3 into the index %(N — 1) we have

l((4J<: +3)-1)= l(4/<: +2) =2k +1 which is odd.
2 2
Therefore the Legendre symbol [_Wl] = —1 so —1 is a quadratic non - residue

of N. This is a contradiction because in the above hypothesis we had —1 is a
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13.
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quadratic residue of N. Hence there are no solutions to z> — Ny* = —1 if

N = 3(m0d 4).

We need to show that z° —11y*> = —2 has solutions but z* —11y> = 2 does not.
We can trial some integers for solutions of z* —11y> = —2. Transposing this
yields

7 = /113" — 2

Substituting y =1 gives z = 11(1)2 — 2 = 3 therefore our seed solution for

> —11y>* =2 is =3 and y = 1. Hence 2° —11y° = —2 has solutions.
We also need to show that 2> —11y* = 2 has no solutions. We have

=24 11y = Q(mod 11)
Since 11 = B(mod 8) so by Proposition (7.15):

5 1 if pE:tl(modS)

p -1 if p=43 (mod 8)

2
The Legendre symbol [H = —1 so 2 is a quadratic non — residue of 11 which
implies that z° = Q(mod 11) has no solutions. Hence z° —11y* =2 has no

solutions.

(a) We are asked to find the seed solution of z* —13y* = 3. Transposing this to

T =+/3+ 13y
Substituting y = 1 into this yields z = /3 + (13 X 12) = \/E = 4. Therefore a

solution of 2° —13y> =3 is x =4 and y=1.

make x the subject we have

(b) We need to solve x> —13y” = —3. Transposing to make z the subject

T =+-3+13y" .

Trialling integer values for y until z is an integer gives
o= -3+ (13x2) =9 =7,

A solution to 2 — 13y’ = -3 is 2 =7 and y =2.

(c) We need to solve 2 —13y* = —1. Transposing to make x the subject
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T =—1+13y" .

Trialling integer values for y until z is an integer gives
o= -1+ (13x5) =321 =18

A solution to > —13y*> = —1 is z =18 and y = 5.

(a) We need to find the fundamental solution of z* —23y* = 1. Transposing
this equation gives z = /1 + 237" . Substituting various integer values for y

until 4/1+4 237* is a square number gives = = /1 + (23 X 52) =+/576 = 24. Thus

our fundamental solution of 2° —23y> =1 is 1 =24 and y =5.

(b) We need to solve 2> —59y” = —2. Making z the subject gives

T = =2+ 59y°

Trialling integer values for y until we get an integer for a:
v =2+ (59x3) =529 =23

Our solution is £ =23 and y=3.

(c) We need to find the least positive solution of 2> —61y”> = —4. Repeating

T = \/—4 + 61y

Trialling integer values for y =1, 2, 3,4, 5. We can stop at y = 5 because

x:\/—4+(61x52):\/ﬁ:39

The least positive solution to z° —61y> = —4 is =239 and y = 5.

what we done above we have

(a) How do we know that x* + y* = 245 has a solution?

Factorizing 245 =5x7° and 5 = 1(m0d 4) , 1= 3(mod 4) . However since 7 is

to an even index we can convert this to a sum of two squares.

By question 23 of Exercises 7(a):

If n is the product of r distinct primes p which satisfy p = 1(mod 4) then the
number of different ways n can be expressed as a sum of two squares is 2" .
There prime decomposition of 245 =5x7° and 5 = 1(mod 4), 7= 3(m0d 4) .

Therefore 245 has 2" = 2" =1 way of writing this as a sum of two squares.

We have
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245 =5x T
:(22 +12)><72 :(22 ><72)+(12 ><72) S+ s =14,y="T.
(b) We need to write down the four solutions of z° + y° = 6409 where
6409 = 13 x 17 x29. How do we know we have 4 distinct solutions?

Note that 13 =17 =29 = l(mod 4) and so by the result of question 23 of
Exercises 7(a):
If n is the product of r distinct primes p which satisfy p = l(mod 4) then the

number of different ways n can be expressed as the sum of two squares is 2.
Since we have r = 3 distinct primes; 13, 17 and 29 and they are all congruent
to 1 modulo 4 so there are 2°" =2* =4 different ways of writing 6409 as the
sum of two squares. Well 13 = 3° +2°, 17 =4° +1* and 29 = 5° +2*. Applying
the Conversion Identity (8.1):
(aQ + bZ)(c2 + dz) = (ac — bd)2 + (ad + bc)2
We have
13x17 = (8 + 2°)(4* + 1°)

= ((3x4)— (2 1))2 +((3%1)+ (2 4))2 By (8.1)]

=10* +11°
Now applying the Conversion Identity (8.1) to this 13 x 17 = 10° + 11* with

29 = 5° +2° yields
6409 = 13 x 17 x 29

= (10° +11°) x (5 + 2°)
= ((10x5) — (11 2)) +((10x2) + (11x5))
= 28" + 75"
By changing the order of multiplication of 6409 = 13 x 17 x 29 we obtain the

other 3 sum of squares representation:

3* +80°, 35* + 72 and 53° + 60°.

(i) First we need to check that r =221+ 27\/6—7 is a solution of
- 67y =—2.
Substituting = = 221 and y = 27 into 2° — 67y” gives

2’ — 67y = 221° — (67 X 272) =-2.

(ii) Now we need to find 7°:



17.

Complete Solutions to Supplementary Problems 8 Page 13 of 23

2
= (221 + 27\/5) _ 9912 | (2 % 991 % 27\/6_7) + (27 x67)
— 97 684 + 11 934467
Substituting z = 97 684 and y = 11 934 into z*> — 67y’ yields

2 — 6Ty = 97 6847 — (67 %11 9342) —4
(iii) We are asked to find 7’ = r* x r. Using our answers to parts (i) and (ii) we
have
P =1t xr = (97 684 + 11 93467  x 221 + 2767 |
= (97 684 x221) + [(97 684 % 27) + (11 934 x 221)]\/5 + (11934 x 27 x 67)
=43176 77045 274 882\/67
Since r* =43 176 770 + 5 274 882\/67 so substituting » = 43 176 770 and
y =5 274 882 into z°> — 67y’ gives
2’ — 67y = 43176 770" — (67 x 5 274 882° ) = —§
(iv) From our results in parts (i), (ii) and (iii) our prediction is
r" gives the solution to z° —67y* = (—2)71
Proof.
We prove this by mathematical induction.
The base case n =1 is clearly true by part (i).
Assume the result is true for n =k, that is
r* gives the solution to z° — 67y° = (—2)k (*)
Required to prove that
"' gives the solution to z° — 67y" = (—Q)IM

By the rules of indices we have 7" =" xr so by (*)

"' = r* xr gives solutions to z° — 67y’ = (—2)k X (—2> = (_2)“1

Hence by mathematical induction we have our predicted result;
r" gives the solution to z° —67y* = (—2)71

This completes our proof.

We need to show that z* = 2y”> 4+ 2 has no solutions.

Proof.
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Since the right — hand side of this z* = 2y* + 2 is even so ° must be even
which implies that z is even. Therefore z” is a multiple of 8, that is z* = 8k

where £ is an integer or in modular arithmetic we have
2t =2y +2= O(mod 8) = 2 = —2(m0d 8)
The ged of 2 and 8 is 2 so dividing this last congruence by 2 gives
v =-1= 3(m0d 4)
However 3> = 0,1, Q(mod 4) (you can easily check this) therefore 2° = 2y* + 2

has no solutions.

(i) We need to check that r =170 + 3919 produces a solution of
P —19y° =1.
Substituting = 170, y = 39 into z* — 19y> gives
170° — (19x39°) = 1
Hence r produces a solution of z* —19y* =1.
(ii) Evaluating
= (170+ 39\/5)2 = 170° + {2170 30¥19 ) + (39* x 19)
— 57799 +13 260519
Checking that x =57 799, y = 13 260 also produces a solution:
57 799" — (19x13 260°) = 1
Similarly we have
P = rxr? = (170 4 3919 (57 799 + 13 260V19
=9825830+2254 200\/5 + 2254 161\@ + (517 140 x 19)
— 19 651 490 + 4 508 361319
Checking that = =19 651 490, y = 4 508 361 produces a solution
19651 490° — (19 x 4508361’ = 1

On my calculator I received an answer of 0 for this but when I checked on
Maple it confirmed the above.

Now checking " we have
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= (1“2)2 _ (57 799 + 13 260:19 )2
— 57799 + (2 « 57 799 x 13 260\/5) + (13 260° x 19)

=3 340 724 401 + 1 532 829 480\/5 + 3 340 724 400
=6 681 448 801 + 1 532 829 480\@
Substituting z = 6 681 448 801, y = 1 532 829 480 into z° —19y* gives

6 681 448 8012 — (19 %1532 829 4802) —1

Again calculator gives 0 but Maple gives the correct answer of 1.

(iii) Finding approximations to \/E by using these solutions by evaluating z.
)

For r we substitute x =170, y = 39 which gives

% — 19 = 0.000 075 42

.. 2 3 4
Similarly for r°, r°, r~ we have

57 799
—4/19 = 6.523x107"°
13 260
+ 19651490 .
= 19 =5.643x10""
4 508361

r 6681448 801

= \J19=4882x10"%
y 1532 829 480

19. We are asked to solve x> — 147> = 1. Transposing this to make x the subject:

z =1+ 14y°
(1

Substituting y =4 gives an integer value for z = ,/1+ (14 X 42) = 15. Therefore

our fundamental solution is z =15,y =4 and we write r = 15 + 4@ .

By using the binomial expansion we have

= (15+4\/ﬁ

154 (5 15" X4\/ﬂ) +(10x15" x4 (14)) +

5

3
10 x 157 x 4° (x/ﬂ)

+ [5 X 15 x 41 (14)2] +45( 14)5

— 12 082 575 + 3 229 204+/14
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The discrepancy between the solution 7° and \/ﬂ is given by finding the

12 082 575
difference —————— — 14 = 1.281 x 107",
3 229 204

We need to write (aQ + nb2>(c2 + nd2) as a sum of two squares. How?

Use the Conversion Identity (8.1):
(aQ + b2>(62 + dz) = (ac — bd)2 + (ad + bc)2
Therefore
a’ +nb’|(c® +nd’)=|a’ + \/;b2 c + \/Zd2
(0% 4 nb?)(¢* + nt
(a%d) + \/;bc

= (ac — nbd)2 +n [ad + bCr

Writing n = \/n_Q]

2

= (ac — nbd)2 +

Hence (aQ + nb2>(02 + ndQ) = 2> + ny’ where = = ac —nbd, y = ad + bc.

We are asked to prove that if each of the integers n, n,, n,,---, n,_ can be

written as sum of two squares then their product can also be written as sum of
two squares.
Proof.
We prove this result by mathematical induction.
Clearly n, = al2 + bf because we are given this.
Assume the result is true for £ = m, that is
n Xmn,xn,X--xn =a’+b? (*)
Required to prove the result for £k = m + 1, that is we need to show
N XM, XN, XeooXn Xn = (amH>2 + (bmﬂ)2
Rewriting the left — hand side and using (*) gives
noXm, e Xn o Xn o= (am2 -+ bm2> xn [By (*)]

= (am2 + bmz) X <c2 + dz) [Because n_ . is sum of two squares
= (amc - bmd>2 + (amd + bmc>2 [By Identity (8.1)]
It follows by mathematical induction that the product n xn, xn, x---Xn,_ can

be written as a sum of two squares.
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(a) We are asked to prove that there are an infinitely many integer solutions of
> — Ny* = 2* for any integer N.
Proof.

We want something similar to question 5(c) of Exercises 8.1:

2

(o) (=] = o )

2

2
We need a minus sign in the middle so let us expand (a2 + NbQ) - N (2ab)
2
(a* + Nbo*) — N (20b)" = a' +20°°N + N*' — 4a**N
=a' —2a°b°N +b'N?
= (a* - Nv?)
Let 2 =a* + Nb°, y =2ab and z = a* — Nb* for any integers a and b.

Therefore we have infinitely many integer solutions to z* — Ny* = 2*.

(b) We also need to find the fundamental or seed solution of z° —230y*> =1.
Transposing to make z the subject gives z = /1 + 230y’ . Substituting various

integer values of y until x is an integer we find that

x:,/1+(230><62> —91

Hence x =91, y = 6 is our seed solution.

We need to prove that the solution of Pell’s equation z* — (NQ" — 1) y' =1
where n is a natural number is y =1, z = N".
Proof.
Substituting y =1, z = N" into 2* — (NQ” — 1) y® gives
2
(Nn) _(NQn _1)12 — N?n _N2n +1 — 1

Hence we have our required result.

We are required to prove that there are infinitely many integer solutions of
7’ —(N2 +1)y2 =1.

Proof.

Transposing the given equation yields

:B2:1+(N2+1)y2 (*)
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Since we are looking for integer solutions so 1+ (N 2 4 1) y” needs to be a square
number. If we let y = N this will not work because
L4 (N* +1)N” = N' + N +1
which is not a square number. Recall from our algebraic identities
(a+b) =a* +2ab+0*
This implies we need an even number in the middle. So, let us try y = 2N :
1+(N? +1)y* =1+(N? +1)(2N)2
= 1+ AN? (N? +1) = 4N' +4N* +1=2N" +1)

Therefore with y = 2N we have square number for 1+ (N 2 4 1) y” . Substituting
this into (*) gives

7 =1+(N 4 1)y = (2N +1) = z=2N" +1
So taking z = 2N* +1 and y = 2N for any integer N we have solutions of
- (N2 + 1) y> =1. Hence z* — (N2 + 1) y* =1 has infinitely many solutions.

We need to prove that every prime p > 3 that satisfies p =1 or 3(mod 8) &
p=2a"+2y.

Proof.

(<:). If p=2®+2y° then 2° +2y° = O(mod p) o 2t =2 (mod p). For

this we have —2 is a quadratic residue of p because y* is a quadratic residue

and product of QR with QR is a QR. By question 9 (ii) of Exercises 7(c):
If the odd prime p satisfies p ‘ (:1:2 + 2) then p =1, 3(m0d 8).
Hence p=1or B(mod 8).

(:>). We have p=1 or 3(mod 8) therefore z° = —2y° (mod p) has solutions
and transposing this gives

42y = O(mod p)
We have z° +2y° = O(mod p) = 12”4 2y° = kp where k is a positive integer.
We need to show that £ < p.

If we chose y =1 then the quadratic congruence z° +2 = O(mod p) which we

. 2 __ . .
can rewrite as ©° = —2(mod p) has solutions because we are given
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p=1lor 3(mod 8). By the symmetrical nature of the quadratic solutions we

2

— -1
have lgng.Therefore 1<2* < P . We are given that p > 3
therefore:
12
p— 2
Pl P,
2 2 2 + 2 2 2
v < <4 A Y
p p p dp p 4 p

Hence z° 4 2 < p*. So there exists positive integers z and y such that
> +2y* = kp where k <p.
By the Well Ordering Principle, WOP, let m be the least of these k’s, that is
2> + 2y> = mp where m is the least positive integer satisfying this.
What do we need to show?
Required to prove that m =1. How?
By contradiction. Suppose m > 1.
We define integers a and b such that

azx(mod m) and bzy(mod m) where —%<a,b S%.

Therefore
a’+2b° =2 + 2y =mp = O(mod m) (*)
Thus, there is an integer n such that
a® +20° = mn (**)
Combining these together, (*) and (**), gives
(a2 + 2b2>(x2 + 2y2) = (mn)(mp) =m’np
Now using the Conversion Identity (8.1) on the left — hand side yields

(0 +26%) (2* +2¢%) = [(\/gbf N aZ][xQ .\ ( \/5y)2]
(V2bo - x/§ay)2 @yt ) =minp (1)

=
By (8.1)
Now we examine both terms inside the brackets (\/be — \/an) = \/5 (bx — ay)
and (2by + ax) :

\/E(bx — ay) = \/E(yx — a:y) = O(mod m)

because a = x(mod m) and b = y(mod m) . Similarly

20y +ax =2yy + 2z = 2" + 2° = O(mod m) By (*)]
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Thus both \/5 (bx — ay) and 20y 4+ ax are multiples of m which implies that we

can divide (J[) by m* and get the following sum of two squares:

2 2
20y + ax br —a
== +2[ y] = np (1)
m m
. . m m
From the above inequality Y <a,b< 5 we have
2 2 3 9
oo <[ +2g] SEL

We have —% <a,b< % so by (**) and the above inequality we have

A +20 =mn<m’ = n<m
We want to show that n is a positive integer. So far we have n is a non —
negative integer.
If n =0 then from (**) we have
a’ +2b :mX(O) = 0 which implies a =0 =0.
From above z =a = O(mod m) and y =b= O(mod m) which implies that

m‘ r and m‘ y respectively. Therefore

2
m

(m2+y2) —~ 2

mp = m ‘ D

We have m < p so m =1 which is our required result.

If n is a positive integer then from (ft) we have np is the sum of two squares
and in the above calculation n < m. This is a contradiction. Why?

Because m was the least positive integer which is the sum of two squares and
now we have found a smaller positive integer n. Our supposition that m > 1
must be wrong so m =1 which implies z* + 23> = mp = p . Hence

p=1or 3(mod 8) can be written as z* + 2y°.

We are asked to prove that every prime p that satisfies p = l(mod 3) can be

written as z° + 3y°.
Proof.
Very similar proof to the previous question.

We need to show that there are solutions x and y such that

’ + 3y = O(mod p) = 2'=-3 (mod p)
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Clearly y* is a quadratic residue of p. For what primes p is —3 a quadratic
residue of p?
By Question 5 of Exercises 7(d):

-3

p

1ifpz1(mmuﬁ
—1if p=5 (modG)

This implies that —3 is a quadratic residue of p provided p =1 (mod 6) .This

p=1 (mod 6) means that p is one more than a multiple of 6; p = 6k +1 for
some positive integer k. We have

p:6k+1:3@@+151@md$
Thus —3 is a quadratic residue of p such that p =1 (mod 3) . Evaluating the

Legendre symbol
_ 3y2
p

-3

p

X

-
By the multiplicative propery of the Legendre symbol

=1 Because y2 isa QR
provided p =1 (mod 3). Hence there are solutions to

2

r=-3y

2

= " +3) = O(mod p)
We have 2° + 3y° = O(mod p) = 2’ + 3y’ = kp where k is a positive integer.
We need to show that k < p.

If we chose y =1 then the quadratic congruence z* + 3 = O(mod p) which we
can rewrite as z° = —S(mod p) has solutions because we are given

p= 1(m0d 3). By the symmetrical nature of the quadratic solutions we have

2
- —1
lgxngl.Therefore 1<2* < pP—2 . We are given that p >3 so
12
p— 2
| +3 P .3
2 9 -+ 2
p p P dp p 4 p

Hence z° 4 3 < p”. So there exists positive integers z and y such that

2> + 3y° = kp where k < p.

By the Well Ordering Principle, WOP, let m be the least of these k’s, that is
2> + 3y° = mp where m is the least positive integer satisfying this.

What do we need to show?
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Required to prove that m =1. How?
By contradiction. Suppose m > 1.
We define integers a and b such that

azx(mod m) and bEy(mod m) where —%<a,b§%.

Therefore
a’+30° =12" + 3y =mp = O(mod m) (*)
Thus, there is an integer n such that
a’ + 30> = mn (%)
Combining these together, (*) and (**), gives
(a2 + 3b2)($2 + 3y2) = (mn)(mp) = m’np

Now using the Conversion Identity (8.1) on the left — hand side yields
(a2 + 3b2>(:132 + 3y2) = [(\/gb)z +a’ [:132 + (\/gy)z]

(\/gb:v — \/gay)z + (3by + a:zz:)2 = m’np (T)

)

[
By (8.1

Now we examine both terms inside the brackets (\/gbx - \/gay) — 3 (b2 — ay)
and (3by + a:v):
5 b ay) =43 (32— 29) = 0{mod m)
because a = x(mod m) and b = y(mod m) . Similarly
3by + az = 3yy + 22 = 3y° + 2° = o(mod m) By (*)]
Thus both V3 (be —ay) and 3by + az are multiples of m which implies that we

can divide (J[) by m* and get the following sum of two squares:

2
+3[bx—ay

m

2

by + az =np  (f1)

m

From the above inequality —% <a,b< % we have

2

UL !

2
o’ + 30 <|— %] =m’

If we have equality, that is a = b = % then from (*)

m =a"+3°=2"+3y° =mp = O(mod mp)



Complete Solutions to Supplementary Problems 8 Page 23 of 23

We have m” | mp which implies m | p. From the start we have m < p

therefore m =1 which is our required result.

If we have strict inequality, that is —% <a,b< % then by (**) and the above

inequality we have

a>+3=mn<m’ = n<m
We have n is a positive integer. From (11) we have np is the sum of two
squares and in the above calculation n < m. This is a contradiction. Why?
Because m was the least positive integer which is the sum of two squares and
now we have found a smaller positive integer n. Our supposition that m > 1
must be wrong so m = 1 which implies z* + 3y° = mp = p. Hence

p= l(mod 3) can be written as z° + 3y°.



