오픈AI o1, 랭체인, 라마인덱스로 만드는 AI 프로그램
o1부터 RAG, 랭체인, 파인 튜닝 그리고 프롬프트 엔지니어링까지
GPT와 파이썬을 활용한 실전 LLM 앱 개발
챗GPT의 등장 이후로 언어 모델은 놀라운 속도로 진화하고 있습니다. 이 책은 LLM의 흥미로운 역사와 핵심 요소를 짚어보고 간단한 파이썬 코드로 인공지능 앱을 만드는 방법을 소개합니다. 오픈AI API와 각종 라이브러리를 활용해 뉴스 기사 생성, 유튜브 동영상 요약, 질의응답 봇, 음성인식 프로그램 등 흥미로운 프로젝트를 직접 구축합니다. 이 과정에서 프롬프트 엔지니어링, 파인 튜닝, 랭체인, RAG 등 고급 주제를 폭넓게 다룹니다.
완전히 새롭게 구성한 2판에는 더욱 확장된 최신 AI 기술을 폭넓게 다룹니다. AI 개념에 대한 명확하고 자세한 설명과 함께 오픈AI 서비스를 효과적이고 안전하게 통합하는 방법을 친절하게 소개합니다. 이 책은 기본적인 파이썬 지식만 있으면 누구나 쉽게 따라 할 수 있습니다. 명확한 설명, 예제 프로젝트, 단계별 지침을 통해 새로운 앱을 만들어 봅시다.
주요 내용
CHAPTER 1 GPT 모델과 챗GPT
_1.1 LLM 소개
__1.1.1 언어 모델과 자연어 처리의 기초 탐구
__1.1.2 트랜스포머 아키텍처와 LLM에서의 역할
__1.1.3 GPT 모델의 토큰화 및 예측 단계
__1.1.4 LLM과 비전 인식의 통합
_1.2 GPT-1부터 GPT-4o까지
__1.2.1 GPT-1
__1.2.2 GPT-2
__1.2.3 GPT-3
__1.2.4 GPT-3에서 인스트럭트GPT로
__1.2.5 GPT-3.5, 챗GPT, 코덱스
__1.2.6 GPT-4
__1.2.7 AI의 진화와 멀티모달리티
_1.3 LLM의 비즈니스 활용 사례
__1.3.1 비 마이 아이즈
__1.3.2 모건 스탠리
__1.3.3 칸 아카데미
__1.3.4 듀오링고
__1.3.5 야블
__1.3.6 웨이마크
__1.3.7 인월드 AI
_1.4 AI 할루시네이션
_1.5 GPT 모델 최적화
_1.6 정리
CHAPTER 2 오픈AI API
_2.1 필수 개념
_2.2 오픈AI API 가용 모델
__2.2.1 GPT 베이스 모델
__2.2.2 인스트럭트GPT(레거시)
__2.2.3 GPT-3.5
__2.2.4 GPT-4
_2.3 오픈AI 플레이그라운드로 GPT 모델 사용하기
_2.4 오픈AI 파이썬 라이브러리
__2.4.1 API 키 발급
__2.4.2 API 호출
_2.5 채팅 완성 모델
__2.5.1 채팅 완성 엔드포인트의 입력 옵션
__2.5.2 temperature와 top_p
__2.5.3 채팅 완성 엔드포인트의 출력 형식
__2.5.4 비전
__2.5.5 JSON 출력
_2.6 텍스트 완성 모델
__2.6.1 텍스트 완성 엔드포인트를 위한 입력 옵션
__2.6.2 텍스트 완성 엔드포인트의 출력 결과 형식
_2.7 고려 사항
__2.7.1 사용료와 토큰 한도
__2.7.2 정보 보안
_2.8 기타 오픈AI API 및 기능
__2.8.1 임베딩
__2.8.2 모더레이션 모델
__2.8.3 텍스트 음성 변환
__2.8.4 음성인식
__2.8.5 이미지 모델 API
_2.9 정리
CHAPTER 3 LLM 기반 애플리케이션 개발
_3.1 주의 사항
__3.1.1 API 키 관리
__3.1.2 보안과 데이터 개인 정보 보호
_3.2 소프트웨어 아키텍처 디자인 패턴
_3.3 LLM 기반 애플리케이션의 능력
__3.3.1 대화 능력
__3.3.2 언어 처리 능력
__3.3.3 인간-컴퓨터 상호작용 능력
__3.3.4 능력 결합
_3.4 프로젝트 예시
__3.4.1 프로젝트 1: 뉴스 생성 솔루션 구축
__3.4.2 프로젝트 2: 유튜브 동영상 요약
__3.4.3 프로젝트 3: <젤다의 전설> 챗봇
__3.4.4 프로젝트 4: 개인 어시스턴트
__3.4.5 프로젝트 5: 문서 정리
__3.4.6 프로젝트 6: 감정 분석
_3.5 비용 관리
_3.6 LLM 기반 애플리케이션의 취약점
__3.6.1 입출력 분석
__3.6.2 프롬프트 인젝션의 불가피성
_3.7 외부 API와 작업
__3.7.1 오류 및 예기치 않은 지연 문제 처리
__3.7.2 요청 제한
__3.7.3 응답성과 사용자 경험 향상
_3.8 정리
CHAPTER 4 GPT-4o 및 챗GPT 활용 고급 기법
_4.1 프롬프트 엔지니어링
__4.1.1 효과적인 프롬프트 설계
__4.1.2 단계별 사고
__4.1.3 퓨샷 러닝 구현
__4.1.4 사용자 피드백을 통한 반복적 개선
__4.1.5 프롬프트 개선
_4.2 파인 튜닝
__4.2.1 시작하기
__4.2.2 오픈AI API를 통한 파인 튜닝
__4.2.3 오픈AI 웹 인터페이스를 통한 파인 튜닝
__4.2.4 파인 튜닝을 활용한 애플리케이션
__4.2.5 파인 튜닝 예시
__4.2.6 파인 튜닝 비용
_4.3 RAG
__4.3.1 기본 RAG
__4.3.2 고급 RAG
__4.3.3 RAG의 한계
_4.4 전략 선택
__4.4.1 전략 비교
__4.4.2 평가
_4.5 LLM 기반 솔루션의 해결 과제
__4.5.1 프롬프트 민감도
__4.5.2 비결정성
__4.5.3 할루시네이션
_4.6 정리
CHAPTER 5 프레임워크로 LLM 기능 높이기
_5.1 랭체인
__5.1.1 랭체인 라이브러리
__5.1.2 동적 프롬프트
__5.1.3 에이전트와 도구
__5.1.4 메모리
__5.1.5 임베딩
_5.2 라마인덱스
__5.2.1 10줄 코드로 RAG 구현하기
__5.2.2 라마인덱스 원칙
__5.2.3 맞춤 설정
_5.3 GPTs
_5.4 어시스턴트 API
__5.4.1 어시스턴트 생성
__5.4.2 어시스턴트 API를 통한 대화 관리
__5.4.3 함수 호출
__5.4.4 오픈AI 웹 플랫폼의 어시스턴트
_5.5 정리
CHAPTER 6 마치며
_6.1 주요 내용
__6.1.1 GPT 모델
__6.1.2 오픈AI API
__6.1.3 기획과 설계
__6.1.4 LLM 기능 활용
__6.1.5 다양한 프레임워크 활용
_6.2 LLM 기반 애플리케이션 개발 과정
__6.2.1 1단계: 아이디어 구상
__6.2.2 2단계: 요구 사항 정의
__6.2.3 3단계: 프로토타입 제작
__6.2.4 4단계: 개선 및 반복
__6.2.5 5단계: 솔루션 완성도 검토
_6.3 정리
APPENDIX A GPT의 활용도를 높이는 도구
A.1 스트림릿
A.2 GPTs 작업 기능
APPENDIX B 오픈AI o1
B.1 챗GPT에서 o1 활용하기
APPENDIX C 용어 사전
C.1 주요 용어
C.2 도구, 라이브러리, 프레임워크
2배로 많아진 분량, 더욱 자세한 설명!
AI 전문 지식이 없어도 쉽게 만드는 LLM 앱 개발 핵심 가이드가 돌아왔다!
이 책은 LLM과 GPT에 관한 핵심 내용을 정리하고, GPT API로 즉시 활용 가능한 인공지능 앱을 만드는 방법을 소개합니다. 간단한 실습과 5가지 실전 프로젝트를 구현하며 인공지능 애플리케이션 개발을 익힐 수 있도록 구성 했습니다. GPT를 이용한 답변 생성, DALL·E를 이용한 이미지 생성, 위스퍼를 사용한 음성인식 등 오픈AI가 지원하는 다양한 AI 서비스를 이용해 내게 필요한 인공지능 앱을 만들어 보세요.
2판은 1판 발매 이후 1년 동안 일어난 변경 사항을 반영하고, 그동안 나온 새로운 프레임워크와 서비스를 소개하는 내용을 더했습니다.
번역서 특별 부록: 오픈AI o1
이번 도서에는 오픈AI의 최신 모델 o1에 대한 설명과 API 사용법을 추가로 담았습니다.
2판에서 달라진 점
대상 독자