메뉴 바로가기 검색 및 카테고리 바로가기 본문 바로가기

한빛출판네트워크

GAN 인 액션

텐서플로 2.x와 케라스로 구축하는 생성적 적대 신경망

한빛미디어

번역서

판매중

  • 저자 : 야쿠프 란그르 , 블라디미르 보크
  • 번역 : 박해선
  • 출간 : 2020-09-17
  • 페이지 : 284 쪽
  • ISBN : 9791162243435
  • 물류코드 :10343
초급 초중급 중급 중고급 고급
4.7점 (3명)
좋아요 : 0

텐서플로 최신 버전 반영! 구글 코랩(Colab)에서 손쉽게 실행 가능한 예제!

이론, 사례, 수식으로 끝내는 실전 GAN과 생성 모델링 

 

가장 혁신적인 생성적 적대 신경망(GAN)을 구축하는 방법을 사례와 함께 안내한다. GAN의 개념과 학술적 성과를 소개하되, 수학적 원리는 꼭 필요한 것만 골라서 설명한다. 머신러닝과 딥러닝을 다뤄본 경험이 있는 독자는 GAN의 기초부터 심화까지 한 번에 살펴본 후, GAN 생성에 꼭 필요한 지식을 갖추고 도구를 다루는 방법도 익히게 될 것이다. 텐서플로 2.x와 케라스로 나만의 GAN을 만들어보자.

 

 

주요 내용

_ GAN의 작동 원리와 생성자, 판별자 이해하기

_ 오토인코더와 GAN으로 손글씨 숫자 생성하기

_ CNN과 DCGAN으로 GAN을 구현하고 배치 정규화 이해하기

_ ProGAN으로 고해상도 이미지 생성하기

_ 준지도 학습에서 활용하는 SGAN 이해하기

_ CGAN으로 원하는 손글씨 숫자 이미지 생성하기

_ CycleGAN으로 사과를 오렌지로, 오렌지를 사과로 바꿔보기

_ GAN 훈련의 어려움을 이해하고 실제 이미지와 잡음으로 적대 샘플 생성하기

_ 의료, 패션 분야에서 GAN의 활용 방법과 사례 살펴보기

 

 

대상 독자

이 책은 머신러닝과 신경망을 다뤄본 경험이 있는 사람을 대상으로 합니다. 책의 각 장에서 필요한 것을 설명하기 위해 최선을 다했지만, 최소한 아래 나열한 것들의 70% 정도는 확실히 알고 있어야 합니다.

 

1. 중급 이상의 파이썬 프로그램을 만들 수 있는 능력 

2. 객체지향 프로그래밍에 대한 이해, 객체를 다루는 방법, 속성, 메서드에 대한 이해

3. 훈련/테스트 데이터셋 분리, 과대적합, 가중치, 하이퍼파라미터 등 머신러닝 기초 

4. 확률, 밀도 함수, 확률 분포, 미분, 간단한 최적화 등과 같은 기초 통계학과 미적분학

5. 행렬, 고차원 공간, (이상적으로는) 주성분 분석 같은 선형 대수에 대한 기초

6. 피드포워드 신경망, 가중치와 편향, 활성화 함수, 규제, 확률적 경사 하강법 등 딥러닝 기초

7. 케라스를 조금이라도 써본 경험 혹은 따로 학습할 의지

 

 

이 책의 구성

이 책은 이론과 실전을 균형 있게 다루며 총 3부로 구성된다.

 

1부 GAN과 생성 모델링

생성 학습과 GAN의 기초 개념을 살펴보고 가장 기본적인 GAN 모델을 구현한다. 

 

_1장 GAN 시작하기

GAN을 소개하고 작동 원리를 고수준에서 설명한다. 생성자와 판별자 네트워크가 경쟁하며 훈련하는 방식을 알아본다. 

 

_2장 오토인코더와 생성 학습

GAN의 선구자라 할 수 있는 오토인코더를 먼저 알아본다. 변이형 오토인코더(VAE)를 이용해 손글씨 숫자를 생성해본다.

 

_3장 첫 번째 GAN 구현하기

GAN 및 적대 학습과 관련된 이론을 자세히 다룬다. GAN과 전통적인 신경망의 핵심적인 차이를 살펴보며, 신경망들의 비용 함수와 훈련 과정의 차이점을 알아본다. 케라스로 GAN을 구현하고 손글씨 숫자를 생성해본다. 

 

_4장 DCGAN

합성곱 신경망(CNN)과 배치 정규화를 소개한다. 그다음 훈련 과정을 안정화하기 위해 배치 정규화를 활용한 고급 GAN 구조인 DCGAN을 구현한다.

 

2부 최신 GAN 모델

1부에서 익힌 기초를 바탕으로 GAN 이론을 더 깊게 다루고, 고급 GAN 구조를 구현한다.

 

__5장 GAN 훈련의 어려움과 노하우

GAN을 훈련하는 과정에서 마주치는 이론적, 실제적 어려움과 이를 극복하는 방법을 알아본다. 학술 논문과 발표 자료를 바탕으로 모범 사례를 알아보고 GAN의 성과를 측정하는 방법도 다룬다. 

 

__6장 ProGAN

생성자와 판별자를 훈련하는 최신 방법인 ProGAN을 살펴본다. ProGAN은 훈련 과정에서 새로운 층을 더해서 우수한 품질과 해상도의 이미지를 생성해본다.

 

__7장 SGAN

준지도 학습을 통해 적은 양의 레이블된 훈련 데이터만으로도 분류 정확도를 개선하는 방법을 배운다. SGAN을 구현하고, 레이블을 활용하여 판별자를 강력한 다중 클래스 분류기로 만드는 방법을 살펴본다.

 

__8장 CGAN

CGAN으로 생성자와 판별자를 훈련하는 과정에서 레이블이나 다른 조건 정보를 활용하여 정확히 어떤 샘플을 합성할 것인지 특정할 수 없는 생성 모델링의 결점을 극복한다. CGAN을 구현해 원하는 데이터를 직접 생성하는 과정을 살펴본다.

 

__9장 CycleGAN

이미지를 다른 이미지로 바꾸는 데 사용할 수 있는 CycleGAN의 혁신을 살펴본다. 말 사진을 얼룩말 사진으로 바꾸거나 사과를 오렌지로 바꾸고 오렌지를 사과로 바꾸는 것 등이다.

 

3부 앞으로 배울 것들

GAN 및 적대 학습의 활용 방법과 사례를 살펴본다. 

 

__10장 적대 샘플

머신러닝 모델을 의도적으로 속여 실수하게 만드는 기술인 적대 샘플을 살펴본다. 이론과 실용 예제로 적대 샘플의 중요성을 설명하고 GAN과 연관성을 살펴본다.

 

__11장 실용적인 GAN 애플리케이션

앞서 다룬 기술이 의료와 패션 분야에서 어떻게 적용되는지 모범 사례를 살펴본다. 의료 분야에서는 GAN을 적은 양의 데이터를 늘리는 데 활용하는 방법을, 패션 분야에서는 개인화 콘텐츠에 활용하는 방법을 살펴본다.

 

__12장 향후 전망

책의 주요 내용을 요약하고 GAN의 윤리적 측면을 논하며 마무리한다. 이 분야를 지속해서 탐구하고 싶은 이들을 위해 떠오르는 GAN 기법도 소개한다.

 

 

추천사

 

“학술적인 정보와 활용 사례를 함께 소개하는 매우 유용한 책.”

__ 데이나 로빈슨, HDF 그룹

 

“빠르고 광대하게 진화하는 GAN 세계를 이해하는 체계적인 방법을 소개한다.”

__ 그리고리 V. 사푸노프, 인텐토

저자

야쿠프 란그르

크리에이티브와 광고 분야에 GAN을 적용하는 스타트업의 공동 창업자. 2013년부터 데이터 과학 분야에서 일했으며 최근에는 필터드(Filtered)에서 데이터 과학 분야 기술 리더로, 무다노(Mudano)에서는 R&D 데이터 과학자로 재직했다. 영국 버밍엄 대학교와 다수 기업에서 데이터 과학 강의를 만들고 가르쳤다. 현재는 옥스퍼드 대학교에서 객원 교수로 재직 중이다. 또한 심층 기술 재능 투자사 안트러프러너 퍼스트(Entrepreneur First) 일곱 번째 집단의 사내 기업가(Entrepreneur in Residence)다. 왕립통계학회 회원이며 다양한 국제 학회에 초청 연사로 참여했다. 옥스퍼드 대학교를 졸업했다.

저자

블라디미르 보크

마이크로소프트 리서치(Microsoft Research)에서 스타일 트랜스퍼(style transfer)를 음악에 적용하는 독립 연구 프로젝트를 수행하면서 GAN의 큰 잠재력을 알아보았다. 와이 콤비네이터(Y Combinator)에서 투자받은 스타트업에서 데이터 과학자로 일한 것뿐 아니라 마이크로소프트에서 다목적 팀을 주도해본 경험까지 경력이 다양하다. 최근에는 뉴욕에 위치한 스타트업에서 데이터 과학 프로젝트 담당하면서 포천 500대 기업을 포함해 온라인 여행사, 전자상거래 업체 등에 머신러닝 기술을 제공한다. 하버드 대학교 컴퓨터 과학과를 우등으로 졸업했다.

역자

박해선

 

 

ML GDE(Machine Learning Google Developer Expert). 기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 텐서 플로우 블로그(tensorflow.blog)에 글을 쓰고 텐서플로 문서 번역에 기여하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다.

 

『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했다. 

 

『미술관에 GAN 딥러닝 실전 프로젝트』(한빛미디어, 2019), 『파이썬을 활용한 머신러닝 쿡북』(한빛미디어, 2019), 『머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로』(길벗, 2019), 『파이썬 라이브러리를 활용한 머신러닝』(한빛미디어, 2019), 『케라스 창시자에게 배우는 딥러닝』(길벗, 2018), 『텐서플로 첫걸음』(한빛미디어, 2016)을 우리말로 옮겼다. 

[PART 1 GAN과 생성 모델링]

 

CHAPTER 1 GAN 시작하기

__1.1 GAN이란? 

__1.2 GAN의 동작 방식 

__1.3 GAN 시스템 

__1.4 왜 GAN을 공부해야 할까? 

__1.5 마치며 

 

CHAPTER 2 오토인코더와 생성 학습

__2.1 생성 모델링 시작하기 

__2.2 오토인코더의 동작 방식 

__2.3 GAN과 오토인코더 비교하기 

__2.4 오토인코더 구성 

__2.5 오토인코더 활용 

__2.6 비지도 학습 

__2.7 코드가 핵심이다 

__2.8 왜 GAN일까? 

__2.9 마치며 

 

CHAPTER 3 첫 번째 GAN 구현하기

__3.1 GAN 기초: 적대적 훈련 

__3.2 생성자와 판별자 

__3.3 GAN 훈련 알고리즘 

__3.4 튜토리얼: 손글씨 숫자 생성하기 

__3.5 결론 

__3.6 마치며 

 

CHAPTER 4 DCGAN

__4.1 합성곱 신경망 

__4.2 DCGAN의 간략한 역사 

__4.3 배치 정규화 

__4.4 튜토리얼: DCGAN으로 손글씨 숫자 생성하기 

__4.5 결론 

__4.6 마치며 

 

 

[PART 2 최신 GAN 모델]

 

CHAPTER 5 GAN 훈련의 어려움과 노하우

__5.1 평가 

__5.2 훈련의 어려움 

__5.3 게임 설정 정리 

__5.4 훈련 노하우 

__5.5 마치며 

 

CHAPTER 6 ProGAN

__6.1 잠재 공간 보간 

__6.2 놀라운 발전 속도 

__6.3 주요 혁신 요약 

__6.4 텐서플로 허브를 사용한 실습 

__6.5 실용적인 애플리케이션 

__6.6 마치며 

 

CHAPTER 7 SGAN

__7.1 SGAN 소개 

__7.2 튜토리얼: SGAN 구현하기 

__7.3 지도 학습 분류기와 비교하기 

__7.4 결론 

__7.5 마치며 

 

CHAPTER 8 CGAN

__8.1 동기 

__8.2 CGAN 소개 

__8.3 튜토리얼: CGAN 구현하기 

__8.4 결론 

__8.5 마치며 

 

CHAPTER 9 CycleGAN

__9.1 이미지 대 이미지 변환 

__9.2 사이클-일관성 손실: 갔다가 돌아오기 

__9.3 적대 손실 

__9.4 동일성 손실 

__9.5 구조 

__9.6 객체지향 방식으로 GAN 구현하기 

__9.7 튜토리얼: CycleGAN 구현하기 

__9.8 CycleGAN의 확장 버전과 애플리케이션 

__9.9 마치며 

 

 

[PART 3 앞으로 배울 것들]


CHAPTER 10 적대 샘플

__10.1 적대 샘플 소개 

__10.2 예측, 나쁜 예측, 분포 

__10.3 올바른 훈련과 잘못된 훈련 

__10.4 신호와 잡음 

__10.5 새로운 희망 

__10.6 적대 샘플에서 GAN으로 

__10.7 결론 

__10.8 마치며 

 

CHAPTER 11 실용적인 GAN 애플리케이션

__11.1 의료 분야의 GAN 

__11.2 패션 분야의 GAN 

__11.3 결론 

__11.4 마치며 

 

CHAPTER 12 향후 전망

__12.1 윤리 

__12.2 세 가지 혁신 GAN 

__12.3 더 읽을거리 

__12.4 정리 

__12.5 마치며 

스스로 학습하고 발전하는 한 단계 높은 수준의 신경망

 

GAN은 일종의 자기 비판적인 머신러닝 시스템입니다. 다른 머신러닝에서는 찾을 수 없어서 항상 아쉬웠던 점이지요. 사람은 끊임없이 가능한 계획을 세우고 실현 가능한지 구별합니다. 그리고 무작정 일에 뛰어드는 게 능사가 아니라는 걸 잘 알고 있지요. 그런 점에서 GAN은 한 단계 높은 수준의 인공지능을 구현하는 정말 합리적인 신경망입니다. GAN은 자동으로 학습한 표현과 머신러닝 피드백 루프를 활용할 수 있으니까요. 

 

머신러닝의 다른 부분에는 이제 그닥 새로울 게 없습니다. 컴퓨터 비전 분야 개념의 대부분은 이미 1998년 이전에 고안된 것입니다. 반면 GAN이 하는 일은 2014년 이전에는 불가능하던 것입니다. GAN은 탄생한 이후로 제가 이 글을 쓰는 지금 이 순간까지 끊임없이 기하급수적으로 성장하고 있습니다.

 

GAN은 가능성이 많은 흥미로운 신세계입니다. 여러분과 이를 함께 나눌 수 있어서 영광이고 기쁩니다. 이 책을 쓰는 데 2년에 가까운 시간이 걸렸습니다. 우리가 그랬던 것처럼 여러분도 이 책과 함께 즐거운 시간을 보내길 바랍니다. 여러분이 앞으로 세상에 내놓을 놀라운 발명들을 하루빨리 보고 싶습니다.

 

- ‘지은이의 말’ 중에서

  • KakaoTalk_20201023_150851370.jpg

     

    철저하게 GAN이 무엇인지에 대해 설명해준 책 입니다.

    시중에 나와있는 여러가지 머신러닝 & 딥러닝 책들을 보면 이것저것 유명한 알고리즘을 소개해주는 경우가 대부분입니다.

    그러나 이 책은 그런 책들과는 달리 대상 독자를 머신러닝을 어느정도 해본 사람을 삼습니다.

    따라서 기본적인 파이썬 프로그래밍을 할 줄 아는 사람이어야 하며 최소한의 머신러닝 수학지식이 있어야합니다.

     

    처음 GAN 소개를 시작으로 DCGAN, ProGAN, SGAN, CGAN, CycleGAN까지 다양한 GAN에 대해서 다룹니다.

    목차만 보더라도 알 수 있듯이 철저하게 GAN에 대해서만 다룹니다.

    가장 마음에 들었던 점은 예제 코드가 많으며

    책에 소개된 예시 코드에서 각 줄마다 어떤 일을 하는지에 대한 설명이 적혀있다는 것 입니다.

     

    나름대로 최신 GAN에 대해서 다루어진 책 같지만 가장 최신 기술은 StyleGAN이나 GauGAN은 간단하게 언급만 하고 넘어간다.

    특히 개인적으로 기대했던 StarGAN은 단어조차 나오지 않는다.

    그러나 책에서 설명이 적혀있듯이 이 분야는 매우 빠르게 변하기 때문에 기초지식이 가장 중요하다.

    따라서 저자의 말대로 이런 논문들을 이해하는 데 필요한 모든 내용은 책을 완독하면 익힐 수 있다고 생각된다.

     

    또한 저자는 모든 사람이 GAN의 가능성과 남용에 대해 이해할 수 있도록 이 책을 집필했다고 한다.

    대표적으로 딥페이크 같은 기술이 그렇다.

    기술이 발전하지 못하도록 막는 것은 불가능하기 때문에, 우리는 기술의 능력을 먼저 이해하고 있어야 한다는 것이다. 

    GAN을 아는 사람이 많아진다면 기존에 이를 악의적으로 사용하던 사람들도 더는 다른 사람을 쉽게 속일 수 없기 때문이다. 

     

    파이썬 언어는 마음에 들지 않지만 가장 빠르게 결과를 보기 위해서는 파이썬만한게 없다고 생각한다.

    나 역시 저자의 바램대로 기술의 악용을 파악하기 위해서 먼저 기술의 능력과 한계를 이해할려고 노력 중이다.

    책 내용도 훌륭하였지만 집필 의도가 굉장히 마음에 든 책이였다.

     

     

    -본 리뷰는 한빛미디어로부터 책을 지원받아 작성된 리뷰입니다-

     

     

     

  • IMG_8427.jpg

     

     

    GAN은 최근에 주목받는 딥러닝 기술 중에 하나입니다.

     

    그동안 GAN을 공부함에 있어서 주로 인터넷을 이용하던가 아니면 논문을 읽으면서 어렴풋이 개념을 이해했었습니다.

     

    프로젝트에 GAN을 도입을 검토해야 하고 있던 중에 "GAN인 액션" 이란 책을 접하게 되었습니다.

     

    이 책의 특징은 GAN의 알고리즘 자체를 마치 이야기하듯 이해하기 쉽게 설명을 해놨다는 점입니다.

     

    이 책은 GAN을 소개하면서 시작합니다. 오토 인코더와 naive GAN 그리고 CNN을 이용한 DCGAN을 설명합니다. 

    IMG_8428.jpg

     

    여러 가지 GAN 알고리즘을 컬러로 된 그림과 핵심만 간추린 코드 블록을 곁들이니 한결 이해하기 쉬웠습니다.

     

    5장의 GAN 훈련의 어려움과 노하우 부분은 앞으로 프로젝트에 GAN을 적용할 때 주의해서 봐야 할 부분입니다.

    GAN 학습의 어려운 점을 설명하고 DCGAN의 손실 함수를 개선한 WGAN에 대해 설명하면서 훈련 노하우에 대해 설명을 합니다.

     

    11장의 의료와 패션 분야에서 어떻게 사용되는지 설명을 통해 앞으로 어떻게 GAN을 이용하면 좋을지 어렴풋이 머릿속에 그려지게 되었습니다.

     

    한 가지 아쉬운 점은 최근 주목받고 있는 StyleGAN도 이런 식으로 설명을 해줬으면 좋겠다는 생각이 들었습니다. 개정판을 기대해 봅니다.

     

    

     

  • 리뷰

     

     


    이번 달 리뷰 할 책으로 받게 된 GAN in Action 입니다.
    개인적으로 in Action 시리즈를 좋아하는데요, 그 이유 중 하나가 자세한 설명이 마음에 들었기 때문입니다.
    이번 책도 기존의 in Action 시리즈들과 같이 자세한 설명이 있는지 궁금하네요.

     

     


    특이하게도, 당연하게도 GAN in Action의 대상 독자는 머신러닝과 신경망을 다뤄본 경험이 있는 사람을 대상으로 한다고 합니다. GAN 자체가 신경망이나 머신러닝을 다루지 않고는 접근하기 어려운 부분이기 때문에 당연하다는 생각도 들었습니다. 여러가지 상세 조건들이 많은데요. 책의 내용을 옮기자면

    1. 중급 이상의 파이썬 프로그램을 만들 수 있는 능력

    2. 객체지향 프로그래밍에 대한 이해, 객체를 다루는 방법, 속성, 메서드에 대한 이해

    3. 훈련/테스트 데이터셋 분리, 과대적합, 가중치, 하이퍼파라미터 등 머신러닝 기초 

    4. 확률, 밀도 함수, 확률 분포, 미분, 간단한 최적화 등과 같은 기초 통계학과 미적분학

    5. 행렬, 고차원 공간, (이상적으로는) 주성분 분석 같은 선형 대수에 대한 기초

    6. 피드포워드 신경망, 가중치와 편향, 활성화 함수, 규제, 확률적 경사 하강법 등 딥러닝 기초

    7. 케라스를 조금이라도 써본 경험 혹은 따로 학습할 의지


    등으로 총 7가지 대상이 적혀 있습니다. 그리고 그 아래 적혀 있네요.
    "여러분에게 겁을 주려는 게 아닙니다. 여러분이 이 책에서 최대한 많은 것을 얻기를 바라는 망므에서 나열했습니다."

     

     

     


    GAN(Generative Adversarial network)은 동시에 두 개의 모델을 훈련하는 머신러닝의 모델입니다.
    Generative이라는 용어는 모델의 '목적' 나타내며, Adversarial은 GAN을 이루는 두 모델인 생성자와 판벼ㅑㄹ자 사이의 게임 같은 경쟁 구도를 나타낸다고 합니다.

    GAN의 가장 놀라운 성과는 image-to-image 변환일 것 같습니다.

    아는 분의 페이스북에서 GAN을 통해 예전 사진의 해상도를 복원 글을 본 적이 있어서 더욱 신기하게 다가왔습니다.

     

    이 책의 좋은 점은 여러 GAN을 접할 수 있다는 겁니다.

    GAN, ProGAN, SGAN, CGAN, CycleCAN 등 챕터가 갈수록 다양한 GAN을 만날 수 있습니다.

    그만큼 책의 난이도도 증가하는 것을 확인할 수 있었습니다.

     

     

     

     

    각 각의 장마다 GAN 알고리즘을 이용해서 따라할 수 있는 튜토리얼들이 존재하고, 조금 더 선명해지고 다양해지는 튜토리얼을 통해 GAN에 다가갈 수 있었습니다.

     

     

     

     

    마지막 장에는 CycleGAN에 대한 내용이 나옵니다. 이미지 대 이미지 변환으로 입력과 출력이 서로 다른 결과를 보여주게 되는데요. 개인적으로는 화질이 흐린 사진을 넣으면 화질이 좋아지는 예제가 있었으면 좋지 않았을까 하는 생각도 해봤습니다. 

     

    GAN에 대해서 아주 자세한 설명을 볼 수 있었고, 기계학습 과 관련된 내용인 만큼 난이도가 있는 것은 사실입니다. 책을 구입하시기 전에 꼭 확인하시고 구입하시는 것을 추천드립니다.

     

    - 한빛미디어로부터 책을 지원 받아 작성 된 리뷰 입니다. 

     

결재하기
• 문화비 소득공제 가능

배송료 안내

  • 책, 아이템 등 상품을 1만원 이상 구매시 무료배송
  • 브론즈, 실버, 골드회원이 주문하신 경우 무료배송

무료배송 상품을 포함하여 주문하신 경우에는 구매금액에 관계없이 무료로 배송해 드립니다.

닫기

리뷰쓰기

닫기
* 도서명 :
GAN 인 액션
* 제목 :
* 별점평가
* 내용 :

* 리뷰 작성시 유의사항

글이나 이미지/사진 저작권 등 다른 사람의 권리를 침해하거나 명예를 훼손하는 게시물은 이용약관 및 관련법률에 의해 제재를 받을 수 있습니다.

1. 특히 뉴스/언론사 기사를 전문 또는 부분적으로 '허락없이' 갖고 와서는 안됩니다 (출처를 밝히는 경우에도 안됨).
2. 저작권자의 허락을 받지 않은 콘텐츠의 무단 사용은 저작권자의 권리를 침해하는 행위로, 이에 대한 법적 책임을 지게 될 수 있습니다.

오탈자 등록

닫기
* 도서명 :
GAN 인 액션
* 구분 :
* 상품 버전
종이책 PDF ePub
* 페이지 :
* 위치정보 :
* 내용 :

도서 인증

닫기
도서명*
GAN 인 액션
구입처*
구입일*
부가기호*
부가기호 안내

* 회원가입후 도서인증을 하시면 마일리지 500점을 드립니다.

* 한빛 웹사이트에서 구입한 도서는 자동 인증됩니다.

* 도서인증은 일 3권, 월 10권, 년 50권으로 제한됩니다.

* 절판도서, eBook 등 일부 도서는 도서인증이 제한됩니다.

닫기

해당 상품을 장바구니에 담았습니다.이미 장바구니에 추가된 상품입니다.
장바구니로 이동하시겠습니까?

자료실