메뉴 바로가기 검색 및 카테고리 바로가기 본문 바로가기

한빛출판네트워크

★ 제프리 리처의 Windows via C/C++(복간판) - 5판까지 이어진 제프리 리처의 명성, 윈도우 프로그래밍의 바이블! ★

텐서플로를 활용한 머신러닝

그림으로 쉽게 개념부터 익히는 머신러닝, 딥러닝 입문서

한빛미디어

집필서

판매중

  • 저자 : 니샨트 수클라
  • 번역 : 송교석 , 감수: 강찬석
  • 출간 : 2019-02-01
  • 페이지 : 312 쪽
  • ISBN : 9791162241073
  • 물류코드 :10107
초급 초중급 중급 중고급 고급
0점 (0명)
좋아요 : 8

텐서플로를 활용해 지금 바로 머신러닝/딥러닝 익히기! 

 

이 책은 머신러닝이나 텐서플로를 처음 접하는 분을 위한 입문서입니다. 머신러닝, 텐서플로 입문자에게는 1부가 특히 중요합니다. 머신러닝의 용어와 이론을 소개하고 텐서플로 개발을 시작할 수 있도록 안내합니다. 2부에서는 머신러닝의 거의 전 분야에 걸쳐 접하게 될 기본 알고리즘을 다룹니다. 마지막으로 3부에서는 텐서플로의 꽃, 신경망을 소개합니다.

 

주요 내용

  • 머신러닝의 개념과 텐서플로의 주요 역할
  • 머신러닝의 기본 알고리즘: 회귀, 분류, 군집, 은닉 마르코프 모델
  • 오토인코더, 강화학습, 합성곱 신경망, 순환 신경망, 시퀀스2시퀀스 모델, 유틸리티

 

추천의 말

 

“이 책은 텐서플로를 활용해 머신러닝부터 딥러닝, 넓게는 강화학습까지 데이터 과학 분야를 전반적으로 다루는 입문서입니다. 물론 시중에도 머신러닝이나 텐서플로 관련 입문서가 참 다양하게 있습니다. 하지만 『신경망 첫걸음』, 『처음 배우는 인공지능』, 『강화학습 첫걸음』을 번역하신 송교석 역자님의 독자를 배려한 번역은 여타 입문서와 비교할 수 없는 장점이 아닐까 생각합니다. 더불어 실제 동작하는 예제를 실행해보면서 텐서플로에 대한 이해를 높일 수 있어, 막 중급으로 진입하려는 개발자와 학생들에게 큰 도움이 될 것입니다.” - 강찬석, LG전자 인공지능연구소

 

저자

니샨트 수클라

UCLA의 박사 과정 연구원으로 로보틱스 분야에서 머신러닝과 컴퓨터비전 기술을 연구합니다. 버지니아 대학교에서 컴퓨터 사이언스와 수학을 전공하였으며 Hack.UVA의 창립 멤버입니다. 하스켈 언어를 강의하여 주목을 받았습니다. 마이크로소프트, 페이스북, 포스퀘어에서 개발자로, 스페이스X에서 머신러닝 엔지니어로 일한 바 있으며, 『하스켈 데이터 분석 쿡북』의 저자이기도 합니다. 분석화학에서 자연어 처리에 이르기까지 다양한 주제로 연구 논문을 썼습니다(http://mng.bz/e9sk). 보드게임 카탄(Settlers of Catan)과 카드게임 궨트(Gwent)를 즐겨 합니다.

역자

송교석

고려대학교 졸업 후 카네기 멜런 대학교에서 컴퓨터과학 석사 학위를 받았습니다. LG전자, 동양시스템즈를 거쳐 안랩에서 10년간 근무했으며, 안랩에서 분사한 노리타운스튜디오의 대표를 역임한 바 있습니다. 2017년 4월 메디픽셀(Medipixel)을 설립하여 대표를 맡고 있으며, 인공지능 기반의 폐암 진단 및 수술로봇 자동화 시스템의 연구개발을 진행하고 있습니다. 『신경망 첫걸음』(2017), 『처음 배우는 인공지능』(2017), 『강화학습 첫걸음』(2018, 이상 한빛미디어)을 우리말로 옮겼습니다. 

역자

감수: 강찬석

LG전자 인공지능연구소에서 시스템 소프트웨어 엔지니어로 근무하며 딥러닝 관련 연구를 하고 있습니다. 컴퓨터에 관해서 다양하고 광범위한 주제에 관심이 있으며, 배운 지식을 블로그(http://talkingaboutme.tistory.com)에 정리해 공유하는 것을 좋아합니다.

PART 1 머신러닝의 비밀병기

 

CHAPTER 1 머신러닝으로의 여행

__1.1 머신러닝 기초 

__1.2 데이터의 표현형과 피처 

__1.3 거리 지표 

__1.4 학습의 종류 

__1.5 텐서플로 

__1.6 앞으로 배울 내용 

__1.7 요약 

 

CHAPTER 2 텐서플로 기초학습

__2.1 텐서플로 동작시키기 

__2.2 텐서의 표현 

__2.3 연산자 생성하기 

__2.4 세션을 이용하여 연산자 실행하기 

__2.5 주피터 노트북에서 코드 작성하기 

__2.6 변수 사용하기 

__2.7 변수를 저장하고 불러오기 

__2.8 텐서보드를 이용한 데이터의 시각화 

__2.9 요약 

 

PART 2 핵심 학습 알고리즘

 

CHAPTER 3 선형 회귀

__3.1 공식 표기법 

__3.2 선형 회귀 

__3.3 다항 모델 

__3.4 정규화 

__3.5 선형 회귀의 응용 

__3.6 요약 

 

CHAPTER 4 데이터의 분류

__4.1 공식 표기법 

__4.2 성능 측정하기 

__4.3 분류를 위한 선형 회귀 

__4.4 로지스틱 회귀 사용하기 

__4.5 다항 분류자 

__4.6 분류의 응용 

__4.7 요약 

 

CHAPTER 5 자동화된 데이터 군집

__5.1 텐서플로에서의 파일 탐색 

__5.2 오디오로부터의 피처 추출 

__5.3 K-means 군집 

__5.4 오디오 세그먼테이션 

__5.5 자기조직화 지도를 이용한 군집 

__5.6 군집의 응용 

__5.7 요약 

 

CHAPTER 6 은닉 마르코프 모델

__6.1 해석하기 어려운 모델의 예 

__6.2 마르코프 모델 

__6.3 은닉 마르코프 모델 

__6.4 포워드 알고리즘 

__6.5 비터비 디코딩 

__6.6 은닉 마르코프 모델의 사용 

__6.7 은닉 마르코프 모델의 응용 

__6.8 요약 

 

PART 3 신경망 패러다임

 

CHAPTER 7 오토인코더 살펴보기

__7.1 신경망 

__7.2 오토인코더 

__7.3 배치 학습 

__7.4 이미지 처리 

__7.5 오토인코더의 응용 

__7.6 요약 

 

CHAPTER 8 강화학습

__8.1 공식 표기법 

__8.2 강화학습 적용하기 

__8.3 강화학습 구현하기 

__8.4 강화학습 응용 사례 

__8.5 요약 

 

CHAPTER 9 합성곱 신경망

__9.1 신경망의 문제점 

__9.2 합성곱 신경망 

__9.3 이미지 준비하기 

__9.4 텐서플로에서 합성곱 신경망 실행하기 

__9.5 성능 개선을 위한 몇 가지 팁 

__9.6 합성곱 신경망의 응용 

__9.7 요약 

 

CHAPTER 10 순환 신경망

__10.1 맥락 정보 

__10.2 순환 신경망 소개 

__10.3 순환 신경망의 구현 

__10.4 시계열 데이터 예측 모델 

__10.5 순환 신경망의 응용 

__10.6 요약 

 

CHAPTER 11 챗봇을 위한 시퀀스2시퀀스 모델

__11.1 분류와 RNN 기반에서 구축하기 

__11.2 Seq2seq 아키텍처 

__11.3 벡터를 이용한 기호의 표기 

__11.4 종합하기 

__11.5 대화 데이터 수집 

__11.6 요약 

 

CHAPTER 12 유틸리티

__12.1 선호 모델 

__12.2 이미지 임베딩 

__12.3 이미지 랭킹 

__12.4 요약 

__12.5 향후 학습에 대한 제언 

 

APPENDIX 설치 가이드

__A.1 도커를 이용해 텐서플로 설치하기 

__A.2 맷플롯립 설치하기 

 

찾아보기 

이 책은 텐서플로의 기초부터 시작하여 머신러닝의 기본이라 할 수 있는 회귀, 군집, 은닉 마르코프 모델을 거쳐 오토인코더, 강화학습, 합성곱 신경망, 순환 신경망, 시퀀스2시퀀스 모델, 유틸리니까지 난이도를 높여갑니다. 상세한 설명을 코드와 함께 제시해 이해하기 쉽게 구성하였습니다. 예제는 아주 기초적인 파이썬 지식만 있으면 대부분 이해하고 실행해볼 수 있습니다. 일부 심화 예제는 객체지향 프로그래밍 배경지식을 필요로 합니다.

 

1부_ 머신러닝의 개념과 텐서플로의 주요 역할을 살펴봅니다.

1장에서는 머신러닝의 용어와 이론을 소개하며, 2장에서는 텐서플로 개발을 시작하기 위한 모든 것을 알려드립니다. 머신러닝과 텐서플로에 익숙하지 않은 분이라면 1장과 2장을 꼭 읽기 바랍니다.

 

2부_ 그동안 검증된 기본적인 알고리즘을 다룹니다. 

3장부터 6장까지 회귀, 분류, 군집, 은닉 마르코프 모델을 학습합니다. 여기에서 학습하는 알고리즘은 앞으로 여러분이 머신러닝 거의 전 분야에 걸쳐 접할 내용입니다.

 

3부_ 텐서플로의 진정한 가치인 신경망을 소개합니다.

7장부터 12장까지 오토인코더, 강화학습, 합성곱 신경망, 순환 신경망, 시퀀스2시퀀스 모델, 유틸리티를 학습합니다.

  • 첫번째 리뷰어가 되어주세요.
부록/예제소스
자료명 등록일 다운로드
예제소스 2019-01-30 다운로드
결재하기
• 문화비 소득공제 가능
• 배송료 : 0원배송료란?

배송료 안내

  • 책, 아이템 등 상품을 3만원 이상 구매시 무료배송
  • 브론즈, 실버, 골드회원이 주문하신 경우 무료배송

무료배송 상품을 포함하여 주문하신 경우에는 구매금액에 관계없이 무료로 배송해 드립니다.

닫기

리뷰쓰기

닫기
* 도서명 :
텐서플로를 활용한 머신러닝
* 제목 :
* 별점평가
* 내용 :

* 리뷰 작성시 유의사항

글이나 이미지/사진 저작권 등 다른 사람의 권리를 침해하거나 명예를 훼손하는 게시물은 이용약관 및 관련법률에 의해 제재를 받을 수 있습니다.

1. 특히 뉴스/언론사 기사를 전문 또는 부분적으로 '허락없이' 갖고 와서는 안됩니다 (출처를 밝히는 경우에도 안됨).
2. 저작권자의 허락을 받지 않은 콘텐츠의 무단 사용은 저작권자의 권리를 침해하는 행위로, 이에 대한 법적 책임을 지게 될 수 있습니다.

오탈자 등록

닫기
* 도서명 :
텐서플로를 활용한 머신러닝
* 구분 :
* 상품 버전
종이책 PDF ePub
* 페이지 :
* 위치정보 :
* 내용 :

도서 인증

닫기
도서명*
텐서플로를 활용한 머신러닝
구입처*
구입일*
부가기호*
부가기호 안내

* 회원가입후 도서인증을 하시면 마일리지 500점을 드립니다.

* 한빛 웹사이트에서 구입한 도서는 자동 인증됩니다.

* 도서인증은 일 3권, 월 10권, 년 50권으로 제한됩니다.

* 절판도서, eBook 등 일부 도서는 도서인증이 제한됩니다.

닫기

해당 상품을 장바구니에 담았습니다.이미 장바구니에 추가된 상품입니다.
장바구니로 이동하시겠습니까?

자료실